Ressources naturelles Canada | Natural Resources CanadaGouvernement du Canada | Government of Canada
EnglishContactez le CCTAide pour ce site WebFaire une recherche sur le site Web du CCTSite Web Gouvernement du Canada
Centre canadien de télédétectionPage d'accueil du Centre canadien de télédétectionStructure du Site web du CCTPublications des scientifiques du CCTExplications des termes de télédétectionRessources naturelles Canada
Personnel du CCT et l'organisationApplications, Recherche et développementTous sur les données, les capteurs et les stations de réceptionCours de formation pratique en télédétection pour étudiants et professeurs et matériaux de référencesLa communauté de télédétection

Table des matières

1. Introduction

2. Capteurs
3. Hyperfréquences
4. Analyse d'image
5. Applications

Accueil > Éducation  > Tutoriels

Notions fondamentales de télédétection


Chapitre 1. IntroductionSection 1.3Section 1.5

 

1.4 Interactions avec l'atmosphère

Épaisseur de l'atmosphère

Avant que le rayonnement utilisé pour la télédétection n'atteigne la surface de la Terre, celui-ci doit traverser une certaine épaisseur d'atmosphère. Les particules et les gaz dans l'atmosphère peuvent dévier ou bloquer le rayonnement incident. Ces effets sont causés par les mécanismes de diffusion et d'absorption. La diffusion se produit lors de l'interaction entre le rayonnement incident et les particules ou les grosses molécules de gaz présentes dans l'atmosphère. Les particules dévient le rayonnement de sa trajectoire initiale. Le niveau de diffusion dépend de plusieurs facteurs comme la longueur d'onde, la densité de particules et de molécules, et l'épaisseur de l'atmosphère que le rayonnement doit franchir. Il existe trois types de diffusion :

  • la diffusion de Rayleigh
  • la diffusion de Mie
  • la diffusion non-sélective.

diffusion

Coucher et lever du SoleilLa diffusion de Rayleigh se produit lorsque la taille des particules est inférieure à la longueur d'onde du rayonnement. Celles-ci peuvent être soit des particules de poussière ou des molécules d'azote ou d'oxygène. La diffusion de Rayleigh disperse et dévie de façon plus importante les courtes longueurs d'onde que les grandes longueurs d'onde. Cette forme de diffusion est prédominante dans les couches supérieures de l'atmosphère. Ce phénomène explique pourquoi nous percevons un ciel bleu durant la journée. Comme la lumière du Soleil traverse l'atmosphère, les courtes longueurs d'onde (correspondant au bleu) du spectre visible sont dispersées et déviées de façon plus importante que les grandes longueurs d'onde. Au coucher et au lever du Soleil, le rayonnement doit parcourir une plus grande distance à travers l'atmosphère qu'au milieu de la journée. La diffusion des courtes longueurs d'onde est plus importante. Ce phénomène permet à une plus grande proportion de grandes longueurs d'onde de pénétrer l'atmosphère.

On parle de diffusion de Mie lorsque les particules sont presque aussi grandes que la longueur d'onde du rayonnement. Ce type de diffusion est souvent produite par la poussière, le pollen, la fumée et l'eau. Ce genre de diffusion affecte les plus grandes longueurs d'onde et se produit surtout dans les couches inférieures de l'atmosphère où les grosses particules sont plus abondantes. Ce processus domine quand le ciel est ennuagé.

diffusion non-sélectiveLe troisième type de diffusion est celui de la diffusion non-sélective. Ce genre de diffusion se produit lorsque les particules (les gouttes d'eau et les grosses particules de poussière) sont beaucoup plus grosses que la longueur d'onde du rayonnement. Nous appelons ce genre de diffusion "non-sélective", car toutes les longueurs d'onde sont dispersées. Les gouttes d'eau de l'atmosphère dispersent le bleu, le vert, et le rouge de façon presque égale, ce qui produit un rayonnement blanc (lumière bleue + verte + rouge = lumière blanche). C'est pourquoi le brouillard et les nuages nous paraissent blancs.

absorptionUn autre phénomène entre en jeu lorsque le rayonnement électromagnétique interagit avec l'atmosphère : c'est l'absorption. L'absorption survient lorsque les grosses molécules de l'atmosphère (ozone, bioxyde de carbone et vapeur d'eau) absorbent l'énergie de diverses longueurs d'onde.

L'ozone absorbe les rayons ultraviolets qui sont néfastes aux êtres vivants. Sans cette couche de protection dans l'atmosphère, notre peau brûlerait lorsqu'elle est exposée au Soleil.

Vous avez peut-être entendu dire que le bioxyde de carbone est un gaz qui contribue à l'effet de serre. Ce gaz absorbe beaucoup de rayonnement dans la portion infrarouge thermique du spectre et emprisonne la chaleur dans l'atmosphère.

La vapeur d'eau dans l'atmosphère absorbe une bonne partie du rayonnement infrarouge de grandes longueurs d'onde et des hyperfréquences de petites longueurs d'onde qui entrent dans l'atmosphère (entre 22 et 1 mm). La présence d'eau dans la partie inférieure de l'atmosphère varie grandement d'un endroit à l'autre et d'un moment à l'autre de l'année. Par exemple, une masse d'air au-dessus d'un désert contient très peu de vapeur d'eau pouvant absorber de l'énergie, tandis qu'une masse d'air au-dessus des tropiques contient une forte concentration de vapeur d'eau.

Longueurs d'onde les plus efficaces pour la télédétection

Parce que ces gaz et ces particules absorbent l'énergie électromagnétique dans des régions spécifiques du spectre, ils influencent le choix de longueurs d'onde utilisées en télédétection. Les régions du spectre qui ne sont pas influencées de façon importante par l'absorption atmosphérique, et qui sont donc utiles pour la télédétection, sont appelées les fenêtres atmosphériques. En comparant les caractéristiques des deux sources d'énergie les plus communes (le Soleil et la Terre) avec les fenêtres atmosphériques disponibles, nous pouvons identifier les longueurs d'onde les plus utiles pour la télédétection. La portion visible du spectre correspond à une fenêtre et au niveau maximal d'énergie solaire. Notez aussi que l'énergie thermique émise par la Terre correspond à une fenêtre située à près de 10 mm dans la partie de l'infrarouge thermique du spectre. Dans la partie des hyperfréquences, il existe une grande fenêtre qui correspond aux longueurs d'onde de plus de 1 mm.

Maintenant que nous comprenons comment l'énergie électromagnétique se rend de sa source à la surface de la Terre (et nous pouvons constater que c'est un voyage difficile), nous allons examiner ce qu'il advient du rayonnement une fois qu'il atteint la surface.

Section 1.3 Saviez-vous que? Questions éclairs Section 1.5


Mise à jour : 2002-08-21 allez au début de la page Avis importants