DInSAR 기법으로 관측된 변위를 이용한 빙하의 속도, 두께, 전단응력 추정

한하선 · 이훈열†
강원대학교 지구물리학과
hyangsun@kangwon.ac.kr, hoonyol@kangwon.ac.kr

Estimation of Glacier Velocity, Thickness, and Shear Stress Using Displacements Observed by DInSAR Technique

Hyangsun Han and Hoonyol Lee†
Department of Geophysics, Kangwon National University

요약: 서남극 지역 빙하의 유통속도와 두께 감소는 매년 증가하고 있어 빙하의 표면 변화와 빙하의 유동성 특성 파악이 필수적이다. 본 연구에서는 서남극 Canisteo 반도의 빙하를 관찰하고자 ERS-1/2 Tandem pair 영상에 4-pass DInSAR(Differential SAR Interferometry) 기법을 적용하였다. DInSAR 수행 결과 추출된 변위를 이용하여 빙하의 표면속도를 계산하였고, 빙하의 평균 경사각을 고려하여 빙하의 두께와 기저면의 전단응력 추정하였다. 빙하의 표면이동은 평균 0.40 m/day로 계산되었으며, 두께와 전단응력은 각각 평균 1.048 m와 0.37 MPa로 추정되었다. 빙하의 calving이 일어나는 지점에서는 평균 경사각보다 큰 경사를 적용하였으며, 두께와 전단응력은 각각 880 m와 0.45 MPa로 추정되었다.

1. 서론

서남극 지역은 복잡한 지형과 함께 지구온난화의 영향을 가장 크게 입는 곳으로, 이 지역 빙하의 변화는 해수면 상승의 주요인으로 작용하고 있다(Thomas et al., 2004). 특히 이 지역의 빙하 호솔속도와 두께의 감소는 매년 증가하고 있어 황후 전 지구적 환경 변화를 예측하기 위해 지속적인 감시가 필요하다.

† 교신저자: 이훈열(hoonyol@kangwon.ac.kr)
Table 1. ERS-1/2 tandem pairs used in this study.

<table>
<thead>
<tr>
<th>Track</th>
<th>Orbit (ERS-1/2)</th>
<th>Date</th>
<th>*B_{perp} (m)</th>
<th>*Ha (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>278</td>
<td>22310/2237</td>
<td>95/10/21/22</td>
<td>40.0</td>
<td>243.2</td>
</tr>
<tr>
<td></td>
<td>24314/4641</td>
<td>96/03/09/10</td>
<td>152.4</td>
<td>63.9</td>
</tr>
</tbody>
</table>

*B_{perp}: perpendicular baseline
*Ha: height ambiguity

Island

2. 연구지역 및 자료

Canisteo 바놀은 서남극 아문슨 해에 인접해 있으며, 서남극 최대 빙하인 Pine

Fig. 1. ERS-1 SAR image of the study area (1995/10/21). Red line indicates the glacial streamline which is the subject of study.
Fig. 2. (a) The earth-flattened differential interferogram of the study area. (b) The map of displacement toward the line of sight extracted from phase unwrapped differential interferogram. Black arrows in white box represent the direction of displacement with glacial streamline.
Fig. 3. (a) Profile of surface velocity of glacier in flow direction (blue) and longitudinal strain rates (red). (b) The estimated glacial thickness (blue) and basal shear stress (red) from various slope angle of glacier.

\[V_f = \frac{\xi}{\Delta T (\sin \theta \cos \beta \cos \alpha - \sin \alpha \cos \theta)} \]

Table 2. Variables used in the calculation of glacier flow velocity, ice thickness, and shear stress.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>23.4°</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>2.3° (error range: -0.5~1.0°)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>22°</td>
</tr>
<tr>
<td>(\Delta T)</td>
<td>86400 s</td>
</tr>
<tr>
<td>(A)</td>
<td>1.7 \times 10^{-25} \text{ Pa}^{-3} \text{s}^{-1}</td>
</tr>
<tr>
<td>(n)</td>
<td>3</td>
</tr>
<tr>
<td>(\rho)</td>
<td>900 kg/m³</td>
</tr>
<tr>
<td>(g)</td>
<td>9.81 m/s²</td>
</tr>
</tbody>
</table>
식 (2)에서 A는 방하의 온도에 의존하는 흐름 변수, n은 크리프 상수, 그리고 ρ 와 g는 각각 양의 밀도와 중력가속도를 의미한다. 식 (2)의 적용을 위해서는 방하의 기저면이 관상의 형태로 안정적인 상태이고 유순을 따라 외부 변형이 발생하며, 측면의 변형 내의 속도는 무시된다는 가정이 필요하다. 만약하고자 하는 경우는 두께가 두께 이상 유순을 따라 흐름은 방하 이로 식의 적용이 가능하다.

식 (2)의 결과를 위한 열용의 온도는 높이 10 m 까지 값을 사용한다(Forster et al., 2003; Patterson, 1994). 통상 방하의 온도는 표면에서 약 3 m 깊이까지 감소하며 하류로 갈수록 다시 증가하며, 10 m 깊이부터는 표면온도와 거의 같은 값을 가진다. 본 연구에서는 AVHRR Polar Pathfinder 자료를 이용하여 방하의 표면 온도(20 $^\circ$C)를 추정하였고, 그에 해당하는 A 값을 적용하였다. n은 극지방 방하의 경우 3을 사용한다(Hook, 2005). 밀도는 900 kg/m3을 적용하였다(Table 2).

식 (3)에서 방하의 두께를 계산할 수 있다. 기저면의 전단응력(τ_6) 계산이 가능하고, 전단응력은 식 (3)과 같이 계산된다.

$$\tau_6 = \rho g H \sin a$$

(3)

일정한 속도에서 추정되는 방하의 두께는 정상각에 의존한다. 방하의 유순을 따라 거의 일정한 정상각을 유지하지만, calving이 일어나는 중간부분을 가속도 정상각에 가까운 경향이 있다. 유순의 중간 부분에서는 가장 작은 정상각이 나타나지만, 이는 일반 정상각과 거의 차이가 없다. 본 연구에서는 방하의 정상각 변화를 고려하여

기 위해 평균 정상각에 $0.5\degree$ 및 $1.0\degree$을 적용하였고, 이를 오차범위로 결정하였다. 그리고 정상각에 의해 추정된 두께를 이용하여 전단응력 계산하였다.

Fig. 3(b)는 식(2), (3)에 의해 추정된 방하의 두께와 기저면의 전단응력 상감각에 따라 나타낸 것이다. 좌측의 제도측은 경사각 $2.3\degree$으로 추정된 두께이며, 우측은 각각으로 도시된 전단응력의 측이다. 두꺼운 실선으로 나타낸 것은 평균 경사각 $2.3\degree$으로 추정된 두께이며, 그에 따른 전단응력이다. 가는 실선으로 나타낸 것은 1.8°, 점선으로 나타낸 것은 3.3°의 경사각에 대한 그래프이다. Fig. 3(b)로부터 박하의 표면 속도가 있을 경우, 정상각이 크면 두께와 큰 전단응력이 계산될 수 있다. 정상각 변화에 의해 두께의 오차는 ±200 m이며, 그에 따른 전단응력의 오차 범위는 0.04~0.02 MPa이다. 평균 경사각으로 계산된 방하의 두께는 평균 1,048 m이며, 이는 이 지역의 고도를 고려할 때 방하방기저면이 해수면 아래에 위치함을 의미한다. 이 두께를 이용하여 추정된 기저면의 전단응력은 평균 0.37 MPa로 계산되었다.

표면속도가 가장 느릴 박하 시작 부분의 두께와 전단응력은 945 m와 0.33 MPa로 추정되었으며($n=2.3\degree$), 유순의 아래쪽으로 갈수록 증가하여 종점 부분에서 1,150 m와 0.41 MPa로 계산된다. 그러나 방하의 두께는 유순의 중점 부분에서 큰 경사각에 의해 적게되게 되므로 정상각의 변화가 고려할 필요가 있다. 유순의 중점 부분에 대해 3.3°의 정상각을 적용할 경우 두께는 880 m, 전단응력은 0.45 MPa로 계산되었다.

4. 도의 및 결론

본 연구에서는 2개의 BERS-1/2 tandem

