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1.1 Propagation of a monochromatic plane electromagnetic 
wave 

1.1.1 Equation of propagation 

The time-space behavior of electromagnetic waves is ruled by the Maxwell equations set 
defined as 
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where are the wave electric field, magnetic field, electric 
induction and magnetic induction respectively. 
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is composed of two terms. The first one, 
, corresponds to a source term, whereas the conduction current density, 

, depends on the conductivity of the propagation medium, 
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field ),( trrρ represents the volume density of free charges. 

The different fields and induction are related by the following relations 
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The vectors  and are called polarization and magnetization, while ),( trP rr ),( trM rr
ε  and 

μ stand for the medium permittivity and permeability.  

In the following, we shall consider the propagation of an electromagnetic wave in a linear 
medium (free of saturation and hysteresis), free of sources. These hypothesis imposes that 
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1.1.2 Monochromatic plane wave solution 

Among the infinite number of solutions to the equation of propagation mentioned in (3), we 
will study the special case of constant amplitude monochromatic plane waves which is 
adapted to the analysis of a wave polarization. 

The monochromatic assumption implies that the right hand term of (3) is null ( ) 0, rrr

=
∇

t
tr
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ρ∂ , 

i.e. the propagation medium is free of mobile electric charges (e.g. is not a plasma whose 
charged particles may interact with the wave). 

The propagation equation expression can be significantly simplified by considering the 
complex expression, )(rE rr

, of the monochromatic time-space electric field, 
r

, defined 
as 
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The propagation equation mentioned in (3) may then be rewritten as  
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Here appears the concept of complex dielectric constant  
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In a general way, a monochromatic plane wave , with constant complex amplitude, 
δ
rr
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àeEE =0 , propagating in the direction of the wave vector, k , has the complex following 
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One may verify that such a wave satisfies the propagation equation given in (5). Without any 
loss of generality, the electric field may be represented in an orthonormal basis 

defined so that the direction of propagation . The expression of the electric field 
becomes 
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It may be observed from (8) that β  acts as the wave number in time domain, while α  
corresponds to an attenuation factor. Back to time domain, this expression becomes in 
vectorial form 
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The attenuation term is common to all the elements of the electric field vector and is then 
unrelated to the wave polarization. For this reason, the medium is assumed to be loss free, 

0=α , in the following 
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1.1.3 Spatial evolution of a plane wave vector: helicoidal trajectory 

At a fixed time, , the electric field is composed of two orthogonal sinusoidal waves 
with, in general, different amplitudes and phases at the origin. 
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Figure 1 Spatial evolution of a monochromatic plane wave components. 

Three particular cases are generally discriminated: 

• Linear polarization: πδδδ mxy +=−= 0  

The electric field is then a sine wave inscribed within a plane oriented with an angle φ  with 
respect to  x̂
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Figure 2 Spatial evolution of a linearly (horizontal) polarized plane wave. 

 

• Circular polarization: 2/0 πδδδ mxy +=−=  and yx EE 00 =  

In this case, the wave has a constant modulus and is oriented with an angle )(zφ  with respect 
to the  axis x̂

2
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r
 and )()( xà kztz δωφ +−±=  (12)
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Figure 3 Spatial evolution of a circularly polarized plane wave. 

The wave rotates circularly around the axis. ẑ

• Elliptic polarization: Otherwise 

The wave describes a helicoidal trajectory around the axis. ẑ
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Figure 4 Spatial evolution of a elliptically polarized plane wave. 

1.2 Polarization ellipse 

1.2.1 Geometrical description  

The former paragraph introduced the spatial evolution of a plane monochromatic wave and 
showed that it follows a helicoidal trajectory along the  axis. From a practical point of view, 
three-dimensional helicoidal curves are difficult to represent and to analyze. This is why a 
characterization of the wave in the time domain, at a fixed position, is generally 
preferred. 
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Figure 5 Temporal trajectory of a monochromatic plane wave at a fixed abscissa  . 0zz =

The temporal behavior is then studied within an equiphase plane, orthogonal to the direction 
of propagation and at a fixed location along the  axis. As time evolves, the wave propagates 
"through" equi-phase planes nd describe a characteristic elliptical locus as shown in 

ẑ
Figure 5. 

The nature of the wave temporal trajectory may be determined from the following parametric 
relation between the components of ),( 0 tzE

r
 



What is Polarization? 

6 

)sin(
),(

)cos(
),(),(

2
),(

2

0

0

00

00
2

0

0
xy

y

y
xy

yx

yx

x

x

E
tzE

EE
tzEtzE

E
tzE

δδδδ −=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 (13)

The expression in (13) is the equation of an ellipse, called the polarization ellipse, that 
describes the wave polarization. 

The polarization ellipse shape may be characterized using 3 parameters as shown in Figure 6. 
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Figure 6 Polarization ellipse. 

- A  is called the ellipse amplitude and is determined from the ellipse axis as 
2
0

2
0 yx EEA +=  (14)

- ⎥⎦
⎤

⎢⎣
⎡−∈

2
,

2
ππφ  is the ellipse orientation and is defined as the angle between the ellipse major 

axis and  x̂

δφ cos22tan 2
0

2
0

00

yx

yx

EE
EE
−

=  with xy δδδ −=  (15)

- ⎥⎦
⎤

⎢⎣
⎡∈

4
,0 πτ is the ellipse aperture, also called ellipticity, defined as 

δτ sin22sin 2
0

2
0

00

yx

yx

EE
EE
+

=  (16)



What is Polarization? 

7 

1.2.2 Sense of rotation 

As time elapses, the wave vector ),( 0 tzE
r

rotates in the to describe the polarization 
ellipse. The time-dependent orientation of 

)ˆ,ˆ( yx
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with respect to , named x̂ )(tξ  is shown in 
Figure 7. 
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Figure 7 Time-dependent rotation of . ),( 0 tzE
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The time-dependent angle may be defined from the components of the wave vector in order to 
determine its sense of rotation. 
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The sense of rotation may then be related to the sign of the variable τ   
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By convention, the sense of rotation is determined while looking in the direction of 

propagation. A right hand rotation corresponds then to 0),(0)(
<⇒>

∂
∂ δτξ

t
t  whereas a left 

hand rotation is characterized by 0),(0)(
>⇒<

∂
∂ δτξ

t
t . 

Figure 8 provides a graphical description of the rotation sense convention. 
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Figure 8 (a) Left hand elliptical polarizations. (b) Right hand elliptical polarizations. 

1.2.3 Quick estimation of a wave polarization state 

A wave polarization is completely defined by two parameters derived from the polarization 
ellipse 

- its orientation, ⎥⎦
⎤

⎢⎣
⎡−∈

2
,

2
ππφ  

- its ellipticity ⎥⎦
⎤

⎢⎣
⎡−∈

4
,

4
ππτ , with )(τsign  indicating the sense of rotation 

The ellipse amplitude A can be used to estimate the wave power density.  

The following procedure provides a quick (calculation free) way to roughly estimate a wave 
polarization. 

Three cases may be discriminated from the knowledge of xy δδδ −= , ,  OxE OyE

• πδ ,0=  
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The polarization is linear since 0=τ  and the orientation angle is given by ⎟⎟
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• 
2
πδ ±= and  yx EE 00 =

The polarization is circular, since 
4
πτ ±=  and the sense of  rotation is given by )(δsign . 

If 0<δ , the polarization is right circular, whereas for 0>δ the polarization is left circular. 

• Otherwise 

If 0<δ , the polarization is right elliptic, whereas for 0>δ the polarization is left elliptic.  

1.2.4 Canonical polarization states 

In practice the axes and are generally referred to as the horizontal,  and vertical v  
directions. 

x̂ ŷ ĥ ˆ

 

 

 

 
(a) (b) 

Figure 9 (a) Horizontal polarization (b) Vertical polarization. 

 

 

 

 

 
(a) (b) 

Figure 10 (a) Linear + 45° polarization. (b) Linear - 45° polarization. 
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(a) (b) 

Figure 11 (a) Right circular polarization. (b) Left circular polarization. 

 

 

 

 
(a) (b) 

Figure 12 (a) Right elliptical –45 °polarization. (b) Left elliptical +45 °polarization. 

1.3 Jones vector 

1.3.1 Definition 

The representation of a plane monochromatic electric field under the form of a Jones vector 
aims to describe the wave polarization using the minimum amount of information. 

A Jones vector, E , is defined from the time-space vector ),( tzE
r

 as 
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 given in (10), E  can be written as 
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The definitions of a polarization state from the polarization ellipse descriptors or from a Jones 
vector are equivalent. 

A Jones vector can be formulated as a two-dimensional complex vector function of the 
polarization ellipse characteristics as follows : 
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Where α is an absolute phase term. 

The Jones vector may be written under a more effective matrix form 
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1.3.2 Orthogonal polarization states and polarization basis 

1.3.2.1 Orthogonal Jones vectors 

Two Jones vectors, 1E  and 2E  are orthogonal if their hermitian scalar product is equal to 0, 
i.e.  

02
†
1 =EE  (23)

with † the transpose conjugate operator. 

From the definition of a Jones vector given in (22), it is straightforward to remark that the 
orthogonality condition implies that ellipse parameters of 1E  and 2E  satisfy 

212
πφφ +=  and 12 ττ −=  (24)

One may remark that the orthogonality condition does not depend on the absolute phase term 
of each Jones vector, 1α and 2α , i.e. if 1E  and 2E are orthogonal, then 1E  and ψjeE 2 are 
orthogonal too, for any value of ψ . 

1.3.2.2 Polarization basis 

According to the definition of a Jones vector from the time-space electric field given in (19), 
any Jones vector expressed in the orthonormal basis  as  )ˆ,ˆ( yx

yExEE yx ˆˆ +=  (25)

A Jones vector defined in the basis , )ˆ,ˆ( yx )ˆ,ˆ( yxE in the may defined from the unitary vector 
associated to the horizontal direction,  x̂

x
j

j
AeE j

yx ˆ
cossin
sincos

cossin
sincos

)ˆ,ˆ( ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=

ττ
ττ

φφ
φφα  (26)

This expression may be further developed  
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The orthogonal Jones may be expressed from (24) as 
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The matrices associated to the ατφ ,, angular variables  
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belong to the group of (2×2) Special Unitary complex matrices SU(2) and have the following 
important properties : 

- [ ] 1+=U  

-  [ ] [ ]†1 UU =−

-  [ ] [ )()( 1 xUxU −=− ]
Two Jones vectors, u  and v  with unitary norms, form a polarization basis if they result from 
the transformation of the  basis )ˆ,ˆ( yx

xUUUu ˆ)]()][()][([ ατφ=  and yUUUv ˆ)]()][()][([ ατφ=  (31)

Or equivalently if 

xUUUu ˆ)]()][()][([ ατφ=  and xUUUv ˆ)]()][()][([ ατπφ −+=  (32)

It can be remarked that a polarization basis can uniquely defined by a single vector 
xUu ˆ)],,([ ατφ= , provided that the second element of the basis v  verifies ⊥= uv . 

One has to point out that the definition of a polarization basis provided in (31) and (32) 
requires that both elements of the basis are constructed using the same absolute phase value 
α . This condition is not necessary for u  and v  to be orthogonal but may involve important 
problems for the analysis of polarimetric response if it is not respected. 

Example : 

Let R be the Jones vector associated to a right circular polarization 

⎥
⎦

⎤
⎢
⎣

⎡
−

==−===
j

xUUUR
1

2
1ˆ)]0()][

4
()][0([ απτφ  (33)

Then the other element of the orthonormal basis is  

⎥
⎦

⎤
⎢
⎣

⎡−
==+=+==⊥ 12

1ˆ)]0()][
4

()][
2

([
j

xUUUR απτπφ  (34)



What is Polarization? 

13 

It can observed that ⊥R is slightly different from the usual definition of a left circular 
polarization Jones vector L  

2
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2
1 πj
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Both Jones vector depict a left circular polarization state but ⊥R only may be coupled to R  to 
form a polarization in the sense it was defined in (31) and (32). 

1.3.3 Polarization ratio 

1.3.3.1 Definition 

An efficient way to characterize a Jones vector polarization state is to build its polarization 
ratio defined as  
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0

0 yyj

x

y

x

y e
E
E

E
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The polarization ratio may be written as a function of the polarization ellipse parameters as 
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Canonical polarization states can be easily discriminated from the knowledge of ρ :  

• πρ mArg += 0)(  

The polarization is linear and the orientation angle is given by ( )ρφ 1tan −=   

• 4
π

ρ
j

e=  

The polarization is circular, ))(( ρArgsign . 

If 0)( <ρArg , the polarization is right circular, whereas for 0)( >ρArg the polarization is 
left circular. 

• Otherwise 

If 0)( <ρArg , the polarization is right elliptic, whereas for 0)( >ρArg the polarization is left 
elliptic.  
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1.3.3.2 Representation of polarization states 

Canonical polarization states are given in the following table 

Polarization 

States 

Unitary Jones 
vector ( )ˆ ˆ,ˆ x yu  

Orientation 

(φ) 

Ellipticity 

(τ) 

Polarizatio ratio 
( )ˆ ˆ,x yρ  
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1
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⎡ ⎤
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0 

 

0 

 

Vertical (V) 
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Linear +45° 
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Linear -45° 
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-1 

 

Left circular 
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2 j
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? 

 

4
π  

 

j 

 

Right circular 

11
2 j
⎡ ⎤
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? 

 

4
π−  

 

-j 

 

A polarization map may also be built from the representation of polarization states in a 
complex plane. 
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Figure 13 Polarization map in the real and imaginary polarization ratio plane. 

1.3.3.3 Orthogonal polarization states and polarization basis 

A Jones vector components may be expressed as a function of its polarization as follows 
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where the absolute phase term is modified in order to account for the polarization ratio 
argument 
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The orthogonal Jones vector is given by 
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with ( )τφτφαα sincoscossinarg'' j+−+=  

With ⊥ρ the orthogonal polarization ratio defined as 

*

1
ρ

ρ −=⊥  (41)

A polarization basis may then be defined from a vector polarization ratio as follows )ˆ,ˆ( vu

xUUu ˆ)]()][([ αρ=  and yUUv ˆ)]()][([ αρ=  (42)

with 
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⎥
⎦

⎤
⎢
⎣

⎡ −

+
==

1
1

1

1)]()][([)]([
*

2 ρ
ρ

ρ
τφρ UUU  (43)

A polarization basis can uniquely defined by the polarization ration of a single vector u , 
provided that the second element of the basis v  verifies ⊥= uv . 

Note that the use of the following transformation matrix 

⎥
⎦

⎤
⎢
⎣

⎡

+ ⊥ρρρ

ρ 11

1 2
 (44)

would lead to the same polarization state for v , but to different α phase terms for u  and v . 

1.3.4 Change of polarimetric basis 

One of the main advantages of radar polarimetry resides in the fact that once a target response 
is acquired in a polarization basis, the response in any basis can be obtained from a simple 
mathematical transformation and does not require any additional measurements. 

A Jones vector, yExEE yxyx ˆˆ)ˆ,ˆ( +=  expressed in the  orthonormal polarimetric basis, 
transforms to 

)ˆ,ˆ( yx
vEuEE vuvu ˆˆ)ˆ,ˆ( += in the  orthonormal basis, with u  given by )ˆ,ˆ( vu ˆ

xUUUu ˆ)]()][()][([ˆ ατφ= , by the way of a Special Unitary transformation. 

The coordinates uE  and vE can be determined according to the following expression  

yExEyUExUEEvEuEE yxuuyxvuvu ˆˆˆ)],,([ˆ)],,([ˆˆ )ˆ,ˆ()ˆ,ˆ( +=+=⇒+= ατφατφ  

xu EUE 1)],,([ −=⇒ ατφ  and yv EUE 1)],,([ −= ατφ  (45)

Finally  

)ˆ,ˆ()ˆ,ˆ()ˆ,ˆ()ˆ,ˆ( ][ yxvuyxvu EUE →=  with 
 )]()][()][([)],,([][ 1

)ˆ,ˆ()ˆ,ˆ( φταατφ −−−== −
→ UUUUU vuyx

(46)

Similarly a change of polarimetric basis from to can be operated using a 
transformation matrix as follows 

)ˆ,ˆ( ba )ˆ,ˆ( vu

)ˆ,ˆ(
1

)ˆ,ˆ(
1 ]][[ˆ]][[ˆ

ˆ][ˆ)],,([ˆ
ˆ][ˆ)],,([ˆ

vuuavuau
uuuu

aaaa EUUEaUUu
xUxUu
xUxUa −− =⇒=⇒

==
==

ατφ
ατφ

 (47)

Note that transformation matrices can also be built from the polarization ratio as shown in the 
former paragraph. 
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1.4 Stokes vector 

1.4.1 Real representation of a plane wave vector 

In the previous section, we presented the representation of the polarization state of a plane 
monochromatic electric field by means of the complex Jones vector. As it can be observed in 
(20), the Jones vector is determined by two complex quantities. Consequently, if the goal of a 
given system is to measure the Jones vector of the received wave, this system must record the 
amplitude and the phase of the incoming wave. 

The availability of coherent systems able to measure the amplitude and phase of the incoming 
waves is relatively recent. In the past, only non-coherent systems were available. These 
systems are only able to measure the power of an incoming wave. Consequently, it was 
necessary to characterize the polarization of a wave only by power measurements. This 
characterization is carried out by the so-called Stokes vector. 

Given the Jones vector E of a given wave, we can create the hermitian product as follows 
* *

*
* *

T x x x y

y x y y

E E E E
E E

E E E E
⎡ ⎤

⋅ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (48)

giving as a result a 2×2 hermitian matrix. At this point, if we consider the Pauli group of 
matrices  

0

1 0
0 1

σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (49)

1

1 0
0 1

σ
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (50)

2

0 1
1 0

σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (51)

3

0
0
j

j
σ

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (52)

It is possible to decompose (48) as follows 

{ }* 0 1 2 3
0 0 1 1 2 2 3 3

2 3 0 1

1 1
2 2

T g g g jg
E E g g g g

g jg g g
σ σ σ σ

+ −⎡ ⎤
⋅ = + + + = ⎢ ⎥+ −⎣ ⎦

 (53)

where the parameters {g0, g1, g2, g3} receive the name of Stokes parameters. From (53), the 
Stokes vector, denoted by gE

{ }
{ }

22

0
22

1

*2

3 *

2

2

x y

x y
E

x y

x y

E E
g

E Eg
g

g E E
g

E E

⎡ ⎤+
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ℜ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ − ℑ⎢ ⎥⎣ ⎦

 (54)
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2
3

where the following relation can be established 
2 2 2
0 1 2g g g g= + +  (55)

The relation given at (55) establishes that in the set {g0, g1, g2, g3} there are only three 
independent parameters. The Stokes parameter g0 is always equal to the total power (density) 
of the wave; g1 is equal to the total power in the linear horizontal or vertical polarized 
components; g2 is equal to the power in the linearly polarized components at tilt angles ψ=45 
degrees or 135 degrees and g3 is equal to the power in the left-handed and right-handed 
circular polarized component in the plane wave. If any of the parameters {g0, g1, g2, g3} has a 
non-zero value, it indicates the presence of a polarized component in the plane wave. 

The Stokes parameters are sufficient to characterize the magnitude and the relative phase, and 
hence, the polarization of a wave. As it can be observed in (54), the Stokes parameters can be 
obtained from only power measurements. Consequently, the Stokes vector is capable to 
characterize the polarization state of a wave by 4 real parameters. The next section presents 
the relations existing between the Stokes parameters {g0, g1, g2, g3} and the polarization 
ellipse parameters. 

 

1.4.2 Relation between the Stokes vector and the polarization ellipse 

The Stokes vector given at (54) can be written as follows 

( )
( )

2 2
0 0 0

2 2
1 0 0

2 0 0

3 0 0

2 cos
2 sin

x y

x y
E

x y

x y

g E E
g E E

g
g E E
g E E

δ
δ

⎡ ⎤+⎡ ⎤
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (56)

If now, we consider the expression presented at (15) and (16), the Stokes vector can be 
written as a function of: the polarization ellipse orientation angle φ and ellipse aperture angle τ 
and the polarization ellipse aperture A 

( ) ( )
( ) ( )

( )

cos 2 cos 2
sin 2 cos 2

sin 2

E

A
A

g
A

A

φ τ
φ τ

τ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (57)

 1.3.2.2At Section , we represented a given Stokes vector as the product of three unitary 
matrices belonging to the special unitary SU(2), see (27) and (30). By using the existing 
homorphism between the group SU(2) and the group O(3) of real orthogonal matrices, given 
by  

( ) ( ) ( )( )*
3 2 2,

12
2

T
p qp q

O Tr U Uθ θ σ θ σ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (58)

we can write the Stokes vector of a particular polarization state as follows 
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( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

1 0 0 0 1 0 0 01 0 0 0
0 cos 2 0 sin 2 0 1 0 02 0 cos 2 sin 2 0

ˆ0 0 1 0 0 0 cos 2 sin 20 sin 2 cos 2 0
0 sin 2 0 cos 2 0 0 sin 2 cos 20 0 0 0

xE u
g A gτ τφ φ

α αφ φ
τ τ α α

−−
−

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 (59)

where 
ˆxu

g represents the Stokes vector associated with the horizontal polarization (59) can be 

rewritten compactly as 

( ) ( ) ( )2
4 4 4 ˆ

2 2 2
xE u

g A O O O gφ τ α⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (60)

1.4.2.1 Orthogonal Stokes vectors 

At Section  1.3.2.1 we defined the orthogonal Jones vectors. As observed in (24), the 
orthogonality can be established in terms if the angles defining the polarization ellipse. 
Consequently, given the Stokes vector of a given polarization state gE, see (57), the 
orthogonal Stokes vector is 

( ) ( )
( ) ( )

( )

cos 2 cos 2
sin 2 cos 2

sin 2

E

A
A

g
A

A

φ τ
φ τ

τ

⊥

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎢ ⎥⎣ ⎦

 (61)

1.4.2.2 Canonical polarization states 

The Stokes vector for the canonical polarization states are presented in the following formula 

Polarization 

States 

Unitary Jones 
vector ( )ˆ ˆ,ˆ x yu  

Stokes vector 
gE

 

Horizontal (H) 

1
0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

1
1
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

Vertical (V) 

0
1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

1
1

0
0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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Linear +45° 

11
12
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

1
0
1
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

Linear -45° 

11
12
−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

1
0
1

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 

 

Left circular 

11
2 j
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

1
0
0
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

Right circular 

11
2 j
⎡ ⎤
⎢ ⎥−⎣ ⎦

 

1
0
0
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

1.4.3 Representation of Stokes vectors: The Poincaré sphere 

As it has been mentioned, the Stokes vector is completely determined by three independent 
parameters. Consequently, a three dimensional representation of the Stokes vector is possible. 
This representation receives the name of Poincaré sphere. 

If we consider the expression for the Stokes vector at (57), it can be observed that the three 
parameters {g1, g2, g3} can be considered as the spherical coordinates of a point in a sphere of 
radius g0. Figure 14 presents an scheme of this representation. From this figure, it can be 
clearly observe which is the effect of the polarization ellipse angles φ and τ, where the 
longitude and latitude of the point defining the polarization state are related with 2φ and 2τ.  

An interesting aspect to highlight about the Poincaré sphere is the representation of 
orthogonal polarization states. Taking into account the expressions presented at (57) and (61) 
it can be observed that two orthogonal polarization states are represented by antipodal points 
in the Poincaré sphere. 
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Figure 14   Poincaré sphere. 

Finally, Figure 15 gives the representation of some canonical polarization states within the 
Poincaré sphere. 
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Figure 15   Canonical polarization states represented at the Poincaré sphere. 
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