
Speckle Filtering 

3.   SPECKLE FILTERING 

3.1 Need for speckle filtering 

Unlike optical remote sensing images, characterized by very neat and uniform features, 
SAR images are affected by speckle. Speckle confers to SAR images a granular aspect 
with random spatial variations. Figure 1 shows an example of single polarization speckled 
SAR images. 

 
 

 
 

 

 
 

Figure 1 Single-look 
2

11S  (top) and 
2

12S (bottom)images. 

The intensity images displayed in Figure 1 show a poor contrast, as well as a random 
aspect, that reduce the possibilities of visual interpretation and analysis of the scene under 
consideration. 

The discrimination of different natural media by comparing intensity to a fixed threshold 
leads, in general to numerous errors due to the high variability of SAR speckled response. 
Speckle phenomenon also affects the phase of scattering coefficients and corrupts 
polarimetric information. 

The image of shown in )( 11SArg Figure 2 indicates that the absolute phase of a scattering 
coefficient is highly random and does not contain evident information. Speckle does not 
affect similarly different polarimetric channels, as shown in the  between channel relative 
phase image,  and in the color coded image, built from the three polarimetric 
channel intensities, 
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Figure 2  (top) and  (middle) images. Color coded image )( 11SArg )( *
2211SSArg
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Speckle corrupts polarimetric observables (phase and intensity) in an important way. Specific 
procedures have to be used to retrieve relevant polarimetric information and to reduce the 
randomness of the acquired signals. 

3.2 Simple speckle model 

3.2.1 Single-polarization multiplicative speckle model 

Speckle confers a random aspect to SAR images, but may not be considered as a simple noise. 
It is, in fact, tightly related to the SAR measurement principle.  

Synthesized SAR data may be considered as the result of the integration of a scene coherent 
response within each resolution cell, resulting from the convolution of the SAR impulse 
response with the coherent contribution of each elementary scatterer, as illustrated in Figure 
3. As the number of contributing scatterers, within a resolution cell, tends to be large (it is the 
case for common resolution SAR measurements), the resulting integrated response is random 
in phase and amplitude and is shown to follow, over homogeneous areas, a Normal 
distribution. 
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Figure 3 Principle of coherent integration. 

A speckled response is usually represented under the form of a simple product model 
nxy .=  (1)

Where y represents a complex speckled scattering coefficient, x  the original unspeckled 
scattering coefficient and n  the multiplicative speckle contribution. 

The speckle term,  is composed of independent real and imaginary parts, following both real 
centered Normal distribution . 

n
)2/1,0(CN

The corresponding speckled intensity, Y , is  
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 (2)

Over homogeneous areas, X  is considered to be constant and the speckled intensity follows 
an exponential probability density function  

X
Y

eXYp
−−= 1)(  (3)

Its first two moments are given by 

XnnEXYE == ∗ )()(  
22 )()( XnnVarXYVar == ∗  

(4)

3.2.2 Polarimetric multiplicative speckle model 

This speckle model may be extended to the polarimetric case by considering that polarimetric 
channels are affected by independent multiplicative speckle components : 
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One may note that the multiplicative assumption is in general not valid to model speckled 
correlation terms. 

3.3 Principle of scalar speckle filtering 

3.3.1 Incoherent averaging 

As presented in the former paragraph, a speckled intensity, Y , may be considered as a 
random variable whose mean value equals the unspeckled intensity, X , but affected by a 
large variance due to speckle. 

The principle of speckle filtering consists of reducing the variance of in order to improve 
the estimate of its mean. 

Y

The sample mean, Y , is defined as the empirical average of L independent realizations of a 
speckled intensity as follows 
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It can be shown that, over homogeneous areas, this estimate of X  follows a Gamma density 
function  
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and has the following two first moments  

XYE =)(   

LXYVar /)( 2=  
(8)

It is possible to observe from (8) that as the number of independent samples, L, reduces to 1 
the variance of the estimate intensity increases, whereas incoherent averaging over L 
independent realizations permits to reduce the variance of a speckled intensity in a significant 
way. 

The quantity  is called the Equivalent Number of Looks (ENL) and is a 
measure of speckle importance. 
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Figure 4 Occurrence (scattering diagram) of single-look of intensity moments over a homogeneous 
areas. 

The occurrence plot displayed in Figure 4 clearly shows that the standard deviation and the 
mean of sampled intensities are linearly related over homogeneous areas. The slope of this 
linear relation is L and equals 1 in the case of single-look data sets. 

3.3.2 Boxcar and J. S. Lee filters 

3.3.2.1 The boxcar filter 

The boxcar filter is a direct application of the incoherent averaging described by (6) to the 
case of an image. 

Filtered intensity estimates, jiX ,
~ , are constructed by computing the sample mean over each 

pixel neighborhood, defined by a sliding window of )( ww NN × pixels 
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where the subscripts i and j correspond to the considered pixel row and column index 
respectively. 

 
 

 
 

Figure 5 
2

11S filtered image using a boxcar filter. 
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Figure 5 shows an intensity image obtained using a (7×7) boxcar filter. This image shows 
enhanced contrast and lower random aspect. 

As it can be seen in Figure 5, the boxcar filter is characterized by two main limitations : 

- sharp edges are generally blurred 

- point scatterers are over filtered and transformed to spread targets 

Solutions to these limitations are offered by the refined Lee filter. 

3.3.2.2 J.S. Lee adaptive filter 

J. S. Lee's filter determines the unspeckled intensity estimate that minimizes the mean squared 
error 

2~ XX −  (10)

This MMSE filter is based on a linearized speckle model leading to the following estimate 
expression 

( )
ww NN

YYkYX −+=~  (11)

where k is an adaptive filtering coefficient, based on local statistics, given by 
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12 =σ  the a priori speckle variance 

(12)

Over homogeneous areas, 00)var( =⇒= kX  and 
wN

YX =~ , whereas over point targets 

and highly heterogeneous areas, YXk =⇒= ~1 and the pixel intensity remains unaffected by 
the filtering procedure. 
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Figure 6 Examples of directional masks. 

In order to reduce the sensitivity of the adaptive filtering coefficient, , to isolated 
heterogeneities, this filter uses directional masks to determine the most homogeneous part of 
the sliding window where local statistics have to be estimated. This modification permits to 
preserve relatively sharp edges. 

k
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The Lee filter results displayed in Figure 7 demonstrate the effectiveness of this adaptive 
filtering approach 

 
 

 
 

Figure 7 
2

11S filtered image using a (7×7) Lee filter. 

3.4 Extension to the polarimetric case 

3.4.1 Second order polarimetric representations 

Speckle filtering is based on incoherent averaging and requires handling statistical second 
order representations. The intensity information used in the scalar case has to be extended to 
the vector case when dealing with two or more polarization channels in order to take into 
account the different intensities as well as the cross-correlation related information. 

A simple way to build an incoherent polarimetric representation consists in vectorizing the 
scattering matrix to create a target vector and computing the corresponding covariance matrix 
(details on matrix incoherent representations may be found in the appendix). 

PL kkS 33 ,][ ⇒  

 with [ ]TL SSSk 2212113 2=  

and [ ]TP SSSSSk 12221122113 2
2

1
−+=  

(13)

The (3×3) covariance matrix, , is defined as : ][ 3C

†
333 ][ LL kkC =   (14)

where † represents the transpose conjugate operator. One may note that  is not a usual 
covariance matrix that would require the use of an expectation operator, but this 
representation may be understood as an incoherent polarimetric form obtained from a single 
realization of 

][ 3C

Lk 3 . 

The (3×3) coherency matrix, ,  is defined as : ][ 3T

†
333 ][ PP kkT =   (15)
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One may note that the coherency matrix is in fact the single realization covariance matrix of 
Pk 3 . 

Covariance and coherency matrices are similar (related by a similarity transformation) and 
may be used in an equivalent way 
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3.4.2 Polarimetric boxcar and Lee's filters 

3.4.2.1 Polarimetric boxcar filter 

The extension of the boxcar filter to the polarimetric case is straightforward. The estimated 
covariance matrix is given by 
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where the subscripts i and j correspond to the considered pixel row and column index 
respectively. 

 

3.4.2.2 J. S. Lee polarimetric filter 

J. S. Lee proposed to estimate the unspeckled covariance matrix according to the following 
expression 

( )][][][]~[ CCkCC −+=  (18)

where remains a scalar coefficient computed from the span statistics, k 332211 CCCspan ++= .  

This approximation allows to filter polarimetric data in a fast and simple way and avoids 
additional coupling (or cross-talk) between the polarimetric channels. 

Figure 8 shows improved color coded images processed through the boxcar and J. S. Lee 
filters. 
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Figure 8 Color-coded, 
2

22
2

12
2

11 ,, SBSGSR === , filtered image using a (7×7) boxcar (top) 
Lee's filter (bottom). 

3.5 Consequences of polarimetric speckle filtering 

It was seen in former paragraphs that it is necessary to reduce polarimetric variables random 
aspect by speckle filtering prior to any interpretation of polarimetric information. The 
incoherent averaging of or  matrices has an important impact on their polarimetric 
properties. 

][ 3T ][ 3C

3.5.1 Interpretation loss vs. information gain 

Speckle filtering may cause a loss of polarimetric information by destroying the relation 
between and or matrices. ][ 3T ][ 3C

A coherency matrix is fully defined by 9 real coefficients : its three diagonal terms and three 
complex correlation coefficients. In the case of a single look coherency matrix, all three 
correlation coefficients have unitary modulus and one of their phase may be obtained by a 
linear combination of the remaining two, leaving 5 degrees of freedom. A relative scattering 
matrix  and single-look or  matrices may be related in a unique way as shown 
in the following example : 
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with jjiiij CCm =  

(19)
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And 
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The scattering mechanism may then be interpreted by comparing [  to canonical 
examples. 

]relS

 

After speckle filtering, this may not be true anymore. In a general case, the modulus of 
correlation coefficients is inferior to one and the phase terms are linearly independent 

222*
klijklij SSSS ≤  and ( ) ( )**

klijklij SSArgSSArg ≠  (21)

 

In such a case, the coherency matrix is said to be distributed and cannot be related to a 
coherent scattering matrix. 

The correlation coefficient displayed in Figure 9 shows a varying modulus over the selected 
scene, indicating that the degree of correlation might be related to the nature of the scattering 
medium. The additional information contained in the cross-correlation terms will be exploited 
by incoherent decomposition theorems to extract even more characteristics from polarimetric 
data sets. 
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Figure 9 Argument (top) and modulus (bottom) of 
2

22
2

11
*
2211 / SSSS after application of a 

Lee filter. 

3.5.2 Partially polarized waves and polarimetric signature 

As it is demonstrated in the appendix, polarization signatures may be built indifferently from 
coherent scattering matrix or incoherent Kennaugh matrix representations. 

The Co-polarization polarimetric signature is given by  
2

),(][),( τφτφ ESEP t
C =  or ),(][),( τφτφ gKgP t

C =  (22)

Let us assume that the Kenaugh matrix ][K  results from the incoherent averaging of N 

single-look matrices . The Co-polarization polarimetric signature of ][ iK ][K  may then be 
expressed as  
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where ),( τφ
r

g stands for the average reflected Stokes vector and may be formulated as  
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Knowing that each reflected Stokes vector may be written as a function of the corresponding 
Jones vector components, that is  
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The average reflected Stokes vector may be expressed as 
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From the Cauchy-Schwarz inequality, we know that  
2
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Relation (27) indicates that the average polarization-dependent intensity of a wave, 
 may be inferior to its total average intensity  (when the reflected Stokes 

vector are not parallel). 
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 Such waves are said to be partially polarized and may be decomposed as follows 
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Where represents a fully polarized wave, with 

 and [ is associated to a completely unpolarized 
(insensitive to polarization) term. 
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The decomposition factor  
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is called the wave degree of polarization. 

The co-polarization polarimetric signature mentioned at the beginning of this paragraph can 
then be rewritten as a function of the degree of polarization 
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When the reflected Stokes vectors are not parallel, i.e. the averaged Kenaugh matrices do not 
correspond by a scalar factor, 1≠α  and it the copular intensity is strictly superior to. In such 
cases, one cannot determine co-pol nor cross-pol nulls and the polarization signature is said to 
show a pedestal. 
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