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4.   POLARIMETRIC DECOMPOSITIONS 

4.1 Coherent Decompositions 

4.1.1 Purpose of the Coherent Decompositions 

The objective of the coherent decompositions is to express the measured scattering matrix by 
the radar, i.e. [ ]S , as a the combination of the scattering responses of simpler objects 

[ ] [ ]
1

k

i i
i

S c S
=

= ∑  (1)

In (1), the symbol [ ]iS stands for the response of every one the simpler objects, also known as 

canonical objects, whereas  indicates the weight of ic [ ]iS  in the combination leading to the 

measured [ ]S . As observed in (1), the term combination refers here to the weighted addition 
of the k scattering matrices. In order to simplify the understanding of (1), it is desirable that 
the matrices [ ]iS  present the property of independence among them to avoid that a particular 

scattering behavior to be present in more than one matrix [ ]iS . Often the most restrictive 
property of orthogonality is imposed. 

As it has been already highlighted in this document, the scattering matrix [ ]S  can 
characterize the scattering process produced by a given target, and therefore the target itself. 
This is possible only in those cases in which both, the incident and the scattered waves are 
completely polarized waves. Consequently, coherent target decompositions can be only 
employed to study the so-called coherent targets. These scatterers are also known as point or 
pure targets. 

In a real situation, the measured scattering matrix by the radar [ ]S corresponds to a complex 
coherent target. Only in a few occasions, this matrix will correspond to a simpler or canonical 
object, which a good example is, for instance, the trihedrals employed to calibrate SAR 
imagery. Nevertheless, in a general situation, a direct analysis of the matrix [ ]S , with the 
objective to infer the physical properties of the scatterer under study, is shown very difficult. 
Thus, the physical properties of the target under study are extracted and interpreted through 
the analysis of the simpler responses [ ]iS  and the corresponding coefficients  in ic (1). 

The decomposition exposed in (1) is not unique in the sense that it is possible to find a 
number of infinite sets [ ]{ }; 1, ,

i
S i k= K  in which the matrix [ ]S can be decomposed. 

Nevertheless, only some of the sets [ ]{ }; 1, ,
i

S i k= K  are convenient to interpret the 

information contained in [ ]S . In the next, we shall detail three of these sets which lead to: the 
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Pauli, the Krogager and the Cameron decompositions. As mentioned above, these 
decompositions of the scattering matrix can be only employed to characterize coherent 
scatterers. Therefore, we will finish this section presenting an algorithm to detect such a 
targets where these decomposition theorems are relevant. 

4.1.2 The Pauli Decomposition 

4.1.2.1 Description of the Pauli Decomposition 

The Pauli decomposition expresses the measured scattering matrix [ ]S  in the so-called Pauli 
basis. If we considered the conventional orthogonal linear (h,v) basis, in a general case, the 
Pauli basis [ ] [ ] [ ] [ ]{ }, , ,

a b c d
S S S S is given by the following four 2×2 matrices 

[ ] 1 01
0 12a

S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (2)

[ ] 1 01
0 12b

S
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (3)

[ ] 0 11
1 02c

S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (4)

[ ] 0 11
1 02d

S
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (5)

In this document, it has been always considered that hv vhS S= , since reciprocity applies in a 
monostatic system configuration. In this situation, the Pauli basis can be reduced to a basis 
composed by the matrices (2), (3) and (4), that is,  

[ ] [ ] [ ]{ }, ,
a b c

S S S  (6)

Consequently, given a measured scattering matrix [ ]S , it can be expressed as follows 

[ ] [ ] [ ] [ ]hh hv
a b

hv vv

S S
S S S

S S
α β γ

⎡ ⎤
= = + +⎢ ⎥
⎣ ⎦

c
S  (7)

where 

2
hh vvS Sα +

=  (8)

2
hh vvS Sβ −

=  (9)

2 hvSγ =  (10)

From (8), (9) and (10) it can be easy show that the span of [ ]S can be obtained as 

2 2 2 2 22hh vv hvSPAN S S S 2α β γ= + + = + +  (11)
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4.1.2.2 Interpretation of the Pauli Decomposition 

The interpretation of the Pauli decomposition must be done according to the matrices in the 
basis given at (6) and the corresponding coefficients (8), (9) and (10). 

The matrix [ ]a
S  corresponds to the scattering matrix of a sphere, a plate or a trihedral. In 

general, [ ]a
S  is referred to single- or odd-bounce scattering. Thus, the complex coefficient α, 

given at (8), represents the contribution of [ ]a
S  to the final measured scattering matrix. In 

particular, the intensity of this coefficient, i.e., 2α , determines the power scattered by targets 
characterized by single- or odd-bounce. 

The second matrix, [ ]bS  represents the scattering mechanism of a dihedral oriented at 0 
degrees. In general, this component indicates a scattering mechanism characterized by double- 
or even-bounce, since the polarization of the returned wave is mirrored respect to the one of 
the incident wave. Consequently, β stands for the complex coefficient of this scattering 
mechanism and 2β  represents the scattered power by this type of targets. 

Finally, the third matrix [  corresponds to the scattering mechanism of a diplane oriented at 
45 degrees. As it can be observed in 

]cS
(4), and considering that this matrix is expressed in the 

linear orthogonal basis (h,v), the target returns a wave with a polarization orthogonal to the 
one of the incident wave. From a qualitative point of view, the scattering mechanism 
represented by [  is referred to those scatterers which are able to return the orthogonal 
polarization, from which, one of the best examples is the volume scattering produced by the 
forest canopy. The coefficient γ represents the contribution of 

]cS

[ ]cS  to [ ]S , whereas 2γ stands 
for the scattered power by this type of scatterers. 

4.1.2.3 Representation of the Polarimetric information by means of the Pauli 
decomposition 

The Pauli decomposition of the scattering matrix is often employed to represent all the 
polarimetric information in a single SAR image.  

The polarimetric information of [ ]S  could be represented by the combination of the 

intensities 2
hhS , 2

vvS  and 22 hvS  in a single RGB image, i.e., every of the previous 
intensities coded as a color channel. The main drawback of this approach is the physical  
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Figure 1  Intensities of the polarimetric channels 
2

hhS , 
2

vvS  and the combination of them in an 
RGB image. 

interpretation of the resulting image in term of 2
hhS , 2

vvS  and 22 hvS . Consequently, an 

RGB image can be formed with the intensities 2α , 2β  and 2γ , which, as explained before, 
correspond to clear physical scattering mechanisms. Thus, the resulting color image can be 
employed to interpret the physical information from a qualitative point of view. The most 
employed codification corresponds to 

2 Redα →  (12)
2 Blueβ →  (13)
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2 Greenγ →  (14)

Then, the resulting color of the RGB image is interpreted in terms of scattering mechanism as 
given by (12), (13) and (14). Figure 1 presents an example of this codification 

4.1.3 The Krogager Decomposition 

4.1.3.1 Description of the Krogager Decomposition 

Krogager has proposed an alternative to factorize the scattering matrix as the combination of 
the responses of a sphere, a diplane and a helix. The last two components present an 
orientation angle θ. If we consider the scattering matrix expressed in the linear orthogonal 
basis (h,v), the Krogager decomposition presents the following formulation 

( ) [ ] [ ] [ ]{ },

21 0 cos2 sin 2 1
0 1 sin 2 cos2 1

s

s

jj
s d hh v s d h

jj j
s d h

S e e k S k S k S

j
e e k k k e

j

ϕϕ

ϕϕ θθ θ
θ θ

⎡ ⎤ = + +⎣ ⎦
⎧ ⎫±⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ±⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

m
 (15)

If we compare (15) with (7), it can be observed that both decompositions present the same 
number of independent parameters, i.e., six. In the case of the Pauli decomposition, the 
complex coefficients α, β and γ, whereas in the case of the Krogager decomposition, the three 
angles φ, φs and θ and the three real coefficients ks, kd and kh. The phase φ is referred as the 
absolute phase, whose value depends on the distance between the radar and the target under 
study. Due to the arbitrary value that this phase can present, it is often considered that the 
Krogager decomposition presents 5 independent parameters given by {φs, θ, ks, kd, kh} plus 
the absolute phase given by φ. 

In order to calculate the value of the parameters {φs, θ, ks, kd, kh} plus the absolute phase φ, a 
reformulation of (15) with the objective to simplify the process is next presented. Now, if we 
consider the measured scattering matrix expressed in the circular polarization basis (r,l), the 
Krogager decomposition is then 

( ) ( ),

2 2

2

0 0 0
0 0 0

rlrr

rrrl

s

jj
rr rlrr rl

r l jj
rl ll rl ll

j j
jj

s d hj

S e S eS S
S

S S S e S e

j e e
e e k k k

j e

ϕϕ

ϕ πϕ

θ θ
ϕϕ

θ

+

−

⎡ ⎤⎡ ⎤⎡ ⎤ = = ⎢ ⎥⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦ ⎣ ⎦
⎧ ⎫

0
⎡ ⎤ ⎡ ⎤⎡ ⎤⎪ ⎪= + +⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎪ ⎣ ⎦ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (16)

From (16), it can be easily observed that the response of the sphere can be obtained from rlS  

s rlk S=  (17)

The terms Srr and Sll represent, directly, the diplane component of the decomposition (16), but 
two cases of analysis must be considered according to the difference in absolute value of Srr 
and Sll. This is necessary in order to accommodate the difference in the scattered power in the 
right and the left circular polarizations. When Sll represents the diplane component, it occurs 
that rr llS S> . Hence 
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d lk S+ = l  (18)

h rr lk S S+ = − l  (19)

And the helix component presents a left sense. On the contrary, when it is Srr the term which 
represents the diplane component, it occurs that ll rrS S>  

d rk S− = r  (20)

h ll rk S S− = − r  (21)

and the helix has a right sense. Finally, from (16), the phase components are 

( )1
2 rr llϕ ϕ ϕ π= + +  (22)

( )1
4 rr llθ ϕ ϕ π= − −  (23)

( )1
2rl rr llϕ ϕ ϕ ϕ= − + +π  (24)

In order to relate the formulations of the Krogager decomposition presented in (15) and (16), 
the following relations are useful 

( )1
2rr hv hh vvS jS S S= + −  (25)

( )1
2ll hv hh vvS jS S S= − −  (26)

( )
2rl hh vv
jS S S= +  (27)

4.1.3.2 Interpretation of the Krogager Decomposition 

The interpretation of the Krogager decomposition must be done according to the coefficients 
{φs, θ, ks, kd, kh}, plus the absolute phase φ. 

The absolute phase φ can contain information about the scatterer under study. But, since its 
value depends also on the distance between the radar and the target, it is considered as a 
irrelevant parameter. 

The parameters φs and ks characterize the sphere component of the Krogager decomposition. 
On the one hand, the phase φs represents a displacement of the sphere respect to the diplane 
and the helix components. On the other hand, the real parameter ks represents the contribution  
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Figure 2  Intensities corresponding to the Krogager decomposition 
2

sk , 
2

dk  and 
2

hk , and the 
combination of them in an RGB image. Images are shown in a dB scale. 

of the sphere component to the final scattering matrix [ ]S . Consequenty, |ks|2 is interpreted as 

the power scattered by the sphere-like component of the matrix [ ]S . 

The phase parameter θ stands for the orientation angle of the deplane and the helix 
components of the Krogager decomposition. 

Finally, the coefficients kd and kh correspond to the weights of the diplane and the helix 
components. Thus, |kd|2 and |kh|2 are interpreted as the power scatterered by the diplane- and 
the helix-like components of the Krogager decomposition. 
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4.1.3.3 Representation of the Polarimetric information by means of the Krogager 
decomposition 

The information provided by the Krogager decomposition can be also employed to form a 
RGB color-coded image representing the polarimetric information. In this case, the phase 
terms are discarded and only the coefficients {ks, kd, kh} are considered in the following way 

2 Redsk →  (28)
2 Bluedk →  (29)

2 Greenhk →  (30)

Figure 2 gives an example of this codification. 

4.1.4 The Cameron Decomposition 

4.1.4.1 Description of the Cameron Decomposition 

The Cameron decomposition performs a factorization of the measured scattering matrix [ ]S  
based on two basic properties of radar targets: reciprocity and symmetry. 

A radar target is considered reciprocal when the diagonal terms of the measured scattering 
matrix are equal, i.e., the reciprocity theorem applies. For a scattering matrix measured in the 
orthogonal linear (h,v) basis 

hv vhS S=  (31)

whereas for the orthogonal circular (r,l) basis 

rl lrS S=  (32)

The reciprocity assumption applies in the case of monostatic SAR systems, where the 
transmitting and receiving antennas are located in the same position. Consequently, all the 
scatterers can be considered as reciprocal when imaged by a monostatic SAR system. 

A scattering is considered symmetric when the target has an axis of symmetry in the plane 
orthogonal to the direction between the radar and the target. The symmetry of a scatterer can 
be also considered in the frame of the Pauli decomposition (7). Hence, a scatterer is 
considered symmetric if it exists a rotation which cancels the projection of [ ]S  in the 

component [  of the Pauli decomposition. ]cS

Since monostatic SAR imagery considerers only reciprocal scatterers, we present, in the 
following, the Cameron decomposition applied to reciprocal targets, i.e., [ ]S  is symmetric. 

Given a scattering matrix measured in the orthogonal linear (h,v) basis 

[ ] hh hv

hv vv

S S
S

S S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (33)

we consider the vector form of [ ]S  as follows 
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hh

hv

hv

vv

S
S

S
S
S

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

r
 (34)

Hence, the Pauli decomposition given at (7) can be formulated in a vector form as follows 

a bS S S Scα β γ= + +
r r r r

r

 (35)

The Cameron decomposition states that a reciprocal target can be decomposed as the sum of 
two components as follows 

max mincos sinsym symS A S Sτ τ⎡ ⎤= +⎣ ⎦
r r

 (36)

Considering the inner vector product as (.,.), and the vector norm as ||.||, the different 
parameters of (36) are obtained as follows 

A S=
r

 (37)
max
sym a bS S Sα ε= +
r r r

 (38)

The matrix max
symS
r

 is called the largest or maximum symmetric component of [ ]S  and it is 
obtained by means of  

cos sinε β θ γ= + θ  (39)

and 

( )
* *

2 2tan 2 βγ βθ γ
β γ

+
=

−
 (40)

The matrix min
symS
r

 is called the minimum symmetric component of S
r

. Finally, the factor cos τ 

is the degree of symmetry of  and it measures the degree to which S
r

S
r

deviates from min
symS
r

 and 
is obtained as 

( )min

min

,
cos

sym

sym

S S

S S
τ =

r r

r r  (41)

4.1.4.2 Representation of Symmetric Scatterers 

An arbitrary symmetric scatterer symS
r

 can be decomposed according to 

( ) ( ) ( ]+ˆ R , ,j
symS ae R z aρ ψ ρ ψ π π⎡ ⎤= Λ ∈ ∈⎣ ⎦
r

−  (42)

where a indicates the amplitude of the scattering matrix, ρ is the nuisance phase and ψ is the 
scatterer orientation angle. The matrix ( )R ψ⎡ ⎤⎣ ⎦  denotes the rotation operator. Finally, the 

normalized vector ( )ˆ zΛ , expressed in the linear polarization basis, is 
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( )

1
01ˆ , 1
01

z z
z

z

⎡ ⎤
⎢ ⎥
⎢ ⎥Λ = ∈ ≤
⎢ ⎥+
⎢ ⎥
⎣ ⎦

C z  (43)

Consequently, the complex quantity z in (43) can be employed to characterize the symmetric 
scatterer under consideration. The following list presents the values of z some some canonical 
targets 

• Triedral 

( )ˆ ˆ 1aS = Λ  (44)

• Diplane 

( )ˆ ˆ 1bS = Λ −  (45)

• Dipole 

( )ˆ ˆ 0lS = Λ  (46)

• Cylinder 

1ˆ ˆ
2cyS ⎛ ⎞= Λ⎜ ⎟

⎝ ⎠
 (47)

• Narrow diplane 

1ˆ ˆ
2ndS ⎛ ⎞= Λ −⎜ ⎟

⎝ ⎠
 (48)

• Quarter wave device 

( )1 4
ˆ ˆS j= Λ  (49)

4.1.4.3 Classification based on the Cameron Decomposition 

On the basis of the factorization of the measured scattering matrix [ ]S , (36), and the 
representation of the maximum symmetrical component as a complex quantity z, Cameron 
proposed a classification scheme for the maximum symmetrical component max

symS
r

. This 
classification scheme is based on comparing the quantity z of the matrix under study with 
those corresponding to the targets given from (44) to (49). In order to compare the measured z 
and the scattering responses of the targets of reference, the following metric must be 
considered 

( )
*

22

1
,

1 1

ref
ref

ref

z z
d z z

z z

+
=

+ +
 (50)

Finally, the measured scatterer z is classified according to the shortest distance d(z,zref). 
Figure 3 presents the Cameron’s classification scheme based on the metric (50). 
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Figure 3 Cameron’s classification scheme. 

4.1.5 Relevance of Coherent Decompositions, Touzi Criterion 

As it has been noticed, the previous coherent decompositions can be only employed to 
analyze pure targets whose scattering response is completely determined by the measured 
scattering matrix [ ]S . Consequently, when working with SAR imagery, it is necessary to 
determine whether a particular pixel is a pure target or, on the contrary, it belongs to a 
distributed scatterer. For the first case, coherent decompositions can be employed to study the 
physics of the scatterer. Nevertheless, the analysis of distributed scatterers must be performed 
by means of the so-called incoherent decompositions. 

A qualitative way to differentiate pure from distributed scatterers is to consider their physical 
nature. A rough division would be to consider the man-made targets as pure targets, whereas 
natural targets can be considered as distributed. For man-made targets we understand all type 
of artificial man-structures in a SAR image such buildings, power lines, train tracks or cars. 
On the contrary, for instance, forests, agricultural areas, bare soils or water have to be 
considered as distributed targets. 

Touzi has proposed a technique to identify pure targets in a SAR images, based on the 
Cameron decomposition. This technique determines the nature of a target on the maximum 
symmetrical component of the Cameron decomposition max

symS
r

. In the analysis of a given target, 
Touzi differentiates two cases to perform such a study. On the one hand, pure targets whose 
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response occupy only one pixel and, on the other hand, targets whose response extends among 
several pixels. 

4.1.5.1 Coherent Test for Point Targets 

A resolution cell, or pixel, in a SAR images is formed by the coherent addition of the 
responses of the elementary scatterers within the resolution cell. In those cases in which there 
is no a dominant scatterer, the statistics of the response is given by the complex Gaussian 
scattering model, giving rise to the so-called speckle.  

Nevertheless, the resolution cell can present a point target, which dominates the response of 
the resolution cell. In this case, the scattering response is due to the coherent combination of 
two components: the one due to the dominant scatterer and the coherent combination due to 
the clutter, which is given by the complex Gaussian scattering statistics model. The statistics 
of the resulting combination receives the name of Rician model. Figure 4 compares the 
response with and without the presence of a point scatterer within the resolution cell. 

 

Real part

Imaginary part

Real part

Imaginary part

Final response
Final responseSpeckle

Speckle

Point target response

(a) (b)

Real part

Imaginary part

Real part

Imaginary part

Real part

Imaginary part

Real part

Imaginary part

Final response
Final responseSpeckle

Speckle

Point target response

(a) (b)  
Figure 4 Coherent response of a given resolution cell (a) without a dominant scatterer, (b) with a 
dominant scatterer. 

 

As observed in Figure 4b, despite the point target (blue arrow) can dominate the response of 
a resolution cell (red arrow), the effect of the clutter (cloud of black arrows) must be taken 
into consideration. It is necessary, hence, to compare the response of the point target with the 
one of the clutter. Hence, a signal to clutter power ratio, denoted by S/C, must be defined. 
Touzi established that this ratio must be higher than 15dB. The reason to choose this value is 
that the response of the resolution cell will present a phase variation smaller than π/4 with 
respect to the response of the point target. 

In order to be, as much as possible, independent from the conditions in which the SAR image 
has been taken, Touzi proposed to apply the previous S/C criteria on the maximum 
polarization return |m|2, which represents the polarization state giving maximum returned 
power from the scatterer under consideration. This parameter, representing the pure target 
response, can be obtained from the diagonalization of the measured scattering matrix [ ]S , via 
its eigendecomposition, as established by Hyunen. According to Huynen, the eigenvalues of 
the covariance matrix [ ]S  can be parameterized as follows 

2
1

jme υλ =  (51)
2 2

2 tan jm e υλ γ −=  (52)
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where λ1 and λ2 are the maximum and the minimum eigenvalues, respectively. In (51) and 
(52), m is the maximum polarization, υ is the skip angle and γ is the polarisability angle. 
Consequently, |m|2 can be derived from the magnitude of the maximum eigenvalue of [ ]S . 
Finally, the power corresponding to the clutter can be derived from a neighboring area not 
affected by the point scatterer. 

4.1.5.2 Coherent Test for Distributed Targets 

For distributed scatterers, Touzi proposed to measure its coherency also in terms of the 
maximum symmetric component max

symS
r

 derived from the Cameron decomposition. On the 
basis of its definition, (38), Touzi defined the so-called degree of coherence of a distributed 
scattered as follows 

( )2 22 2 *

2 2

4
symp

α β α β

α β

− + ⋅
=

+
 (53)

The degree of coherence is generated by a moving window. In the resulting map, those pixels 
presenting  symp  close to 1 represent areas in which the scatterer is locally coherent. Hence, 
the coherent decomposition theorems can be applied in this case. 

 
[ ] hh hv

hv vv

S S
S

S S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

max
sym a bS S Sα ε= +
r r r

Symmetric scattering

Dist. target
coherence

Point target
coherence

T
TF

T

F

[ ] hh hv

hv vv

S S
S

S S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

max
sym a bS S Sα ε= +
r r r

Symmetric scattering

Dist. target
coherence

Point target
coherence

T
TF

T

F

Coherent ScattererNon-coherent Scatterer Coherent ScattererNon-coherent Scatterer  
Figure 5 Cameron’s classification scheme. 

4.1.5.3 Coherent Test Algorithm 

On the basis of the coherent test presented in the previous two points, Touzi proposed an 
algorithm to determine which pixels in a SAR image are coherent, and, therefore, the coherent 
decomposition theorems can be employed to analyze them. Figure 5 presents the flow chart 
of the algorithm. 
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4.2 Incoherent Decompositions 

4.2.1 Purpouse of the incoherent decompositions 

As explained previously, the scattering matrix [ ]S  is only able to characterize the so-called 
coherent or pure scatterers. On the contrary, this matrix can not be employed to characterize, 
from a polarimetric point of view, the so-called distributed scatterers. This type of scatterers 
can be only characterized, statistically, due to the presence of speckle noise. Since speckle 
noise must be reduced, only second order polarimetric representations can be employed to 
analyze distributed scatterers. These second order descriptors are the 3×3, Hermitian average 
covariance [ ]3C [ ]3T  and the coherency [ ]3T  matrices. These two representations of the 

polarimetric information are equivalent. 

The complexity of the scattering process makes extremely difficult the physical study of a 
given scatterer through the direct analysis of [ ]3C  or [ ]3T . Hence, the objective of the 

incoherent decompositions is to separate the [ ]3C  or [ ]3T  matrices as the combination of 

second order descriptors corresponding to simpler or canonical objects, presenting an easier 
physical interpretation. These decomposition theorems can be expressed as 

[ ] [ ]3 3
1

k

i i
i

C p C
=

= ∑  (54)

[ ] [ ]3 3
1

k

i i
i

T q
=

= ∑ T  (55)

where the canonical responses are represented by [ ]3 i
C  and [ ]3 i

T , and ip  and  denote the 

coefficients of these components in 
iq

[ ]3C  or [ ]3T , respectively. As in the case of the 

coherent decomposition, it is desirable that these components present some properties. First of 
all, it is desirable that the components [ ]3 i

C  and [ ]3 i
T  correspond to pure targets in order to 

simplify the physical study. Nevertheless, this is not absolutely necessary. In addition the 
components [ ]3 i

C  and [ ]3 i
T  are independent, or in a more restrictive way, orthogonal. 

The bases in which [ ]3C  or [ ]3T  are decomposed, i.e., [ ]{ }3 ; 1, ,
i

C i k= K  and 

[ ]{ }3 ; 1, ,
i

T i k= K  are not unique. Consequently, different decompositions can be presented. In 

the following we detail: the Freeman, the Huynen and the Eigenvector-eigenvalue 
decompositions. 

4.2.2 The Model-based Freeman Decomposition 

4.2.2.1 Description of the Freeman Decomposition 

The Freeman decomposition models the covariance matrix as the contribution of three 
scattering mechanisms 
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• Volume scattering where a canopy scatterer is modeled as a set of randomly oriented 
dipoles. 

• Double-bounce scattering modeled by a dihedral corner reflector. 

• Surface or single-bounce scattering modeled by a first-order Bragg surface scatterer. 

The volume scattering from a forest canopy is modeled as the contribution from an ensemble 
of randomly oriented thin dipoles. The scattering matrix of an elementary dipole, expressed in 
the orthogonal linear (h,v) basis, when horizontally oriented, has the expression 

[ ] 0
0

h

v

R
S

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (56)

For a thin dipole, (58) reduces to  

[ ] 1 0
0 0

S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (57)

Now, if we considerer a set of randomly oriented dipoles, characterized by the previous 
scattering matrix and oriented according to a uniform phase distribution, the covariance 
matrix of the ensemble of thin dipoles can be modeled by  

[ ]3

1 0 1 3
0 2 3 0

1 3 0 1
vv

C f
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (58)

where fv corresponds to the contribution of the volume scattering to the |Svv|2 component. The 
covariance matrix [ ]3 v

C  presents rank 3. Thus, the volume scattering can not be 

characterized by a single scattering matrix of a pure target. 

The second component of the Freeman decomposition corresponds to the double-bounce 
scattering. In this case, a generalized corner reflector is employed to model the scattering 
process. The diplane itself is not considered metallic. Hence, we consider that the vertical 
surface has reflection coefficients Rth and Rtv for the horizontal and the vertical polarizations, 
whereas the horizontal one presents the coefficients Rgh and Rgv for the same polarizations. 
Additionally, two phase components for the horizontal and the vertical polarizations are 
considered, i.e., 2 hje γ  and 2 vje γ , respectively. The complex phase terms hγ  and vγ  account 
for any attenuation or phase change effect. Hence, the scattering matrix of the generalized 
dihedral is 

[ ]
2

2

0
0

h

v

j
gh th

j
gv tv

e R R
S

e R R

γ

γ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (59)

which gives rise to the covariance matrix of the double-bounce scattering component. After 
normalization respect to the Svv component, this covariance matrix can be written as follows 

[ ]

2

3
*

0
0 0 0

0 1
dd

C f
α α

α

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (60)
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where 

( )2 h vj gh th

gv tv

R R
e

R R
γ γα −=  (61)

and fd corresponds to the contribution of the double-bounce scattering to the |Svv|2 component 
2

d gv tvf R R=  (62)

As it can be observed, the covariance matrix [ ]3 d
C  has rank 1, as it can be represented by the 

scattering matrix given at (59). 

The third component of the Freeman decomposition consist of a first-order Brag surface 
scatterer modeling surface scattering. The scattering mechanism is represented by the 
scattering matrix 

[ ] 0
0

h

v

R
S

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (63)

Consequently, the covariance matrix corresponding to this scattering component is  

[ ]

2

3
*

0
0 0 0

0 1
ss

C f
β α

α

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (64)

where fs corresponds to the contribution of the double-bounce scattering to the |Svv|2 
component 

2
s vf R=  (65)

and 

h

v

R
R

β =  (66)

As in the case for the double-bounce scattering mechanism, since the matrix [ ]3 s
C  presents 

rank 1, therefore, it is completely represented by the scattering mechanism presented at (63). 

Hence, the Freeman decomposition expresses the measured covariance matrix [ ]3C  as follows 

[ ] [ ] [ ] [ ]3 3 3 d sv
C C C C= + + 3  (67)

4.2.2.2 Interpretation of the Freeman Decomposition 

The term fv in (58) corresponds to the contribution of the volume scattering of the final 
covariance matrix [ ]3C . Hence, the scattered power by this component can be written as 

follows 

8
3

v
v

fP =  (68)
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From (60), it can be concluded that the power scattered by the double-bounce component of 
[ ]3C  has the expression 

( )21d dP f α= +  (69)

Finally, the power scattered by the surface-like component is  

( )21s sP f β= +  (70)

Consequently, the scattered power Pv, Pd and Ps can be employed to generate a RGB image to 
present all the color-coded polarimetric information in a sole image. Figure 6 presents an 
example of the Freeman decomposition. 

 
Pv (dB) 

 
Pd (dB) 

-15dB 0dB-30dB -15dB 0dB-30dB  

 
Ps (dB) 

 
Pv(dB)  Pd(dB)  Ps(dB) 

Figure 6  Intensities corresponding to the Freeman decomposition Pv, Pd and Ps and the 
combination of them in an RGB image. Images are shown in a dB scale. 

From (68), (69) and (70) it can be observed, that the Freeman decomposition maintains the 
span or total scattered power 

17 



Polarimetric Decompositions 

2 2 22hh vv hv v d sSPAN S S S P P P= + + = + +  (71)

The Freeman decomposition presented in (67) presents 5 independent parameters {fv, fd, fs, α, 
β} and only 4 equations. Consequently, some hypothesis must be considered in order to find 
the values of {fv, fd, fs, α, β}. Figure 7 presents the scheme employed to invert the Freeman 
decomposition. 

 { }2 2 2 *, , ,hh vv hv hh vvS S S S S

23v hvf S={ }, , , ,v d sf f f α β

{ }* 0 1hh vvif S S αℜ ≥ ⇒ = − { }* 0 1hh vvif S S βℜ < ⇒ =

{ }, ,d sf f β { }, ,d sf f α

Single-bounce
scattering dominates

Double-bounce
scattering dominates

5 parameters
4 equations

4 parameters
3 equations

3 parameters
3 equations

1α = − 1β =

{ }2 2 2 *, , ,hh vv hv hh vvS S S S S

23v hvf S={ }, , , ,v d sf f f α β

{ }* 0 1hh vvif S S αℜ ≥ ⇒ = − { }* 0 1hh vvif S S βℜ < ⇒ =

{ }, ,d sf f β { }, ,d sf f α

5 parameters
4 equations

4 parameters
3 equations

3 parameters
3 equations

Single-bounce
scattering dominates

Double-bounce
scattering dominates

1α = − 1β =

 

Figure 7 Inversion of the Freeman decomposition parameters. 

4.2.3 Phenomenological Huynen Decomposition 

4.2.3.1 Description of the Huynen Decomposition 

The Phenomenological Huynen decomposition represents the first attempt to consider 
decomposition theorems for the analysis of distributed scatterers. The Huynen decomposition 
considers the concept of “wave dichotomy”, exporting it to the study of distributed scatterers. 

On a first stage, the phenomenological Huynen decomposition considers a particular 
parameterization of a distributed scatterer. In the case of the covariance matrix, this 
parametrization is 

[ ]
0

3 0

0

2 A C j D H j G
T C j D B B E j F

H j G E j F B B

⎡ ⎤− +
⎢ ⎥= + + +⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 (72)

The set of nine independent parameters of this particular parameterization allows a physical 
interpretation of the target under consideration. The following list presents the information 
provided by each one of the parameters: 

• A0: Represents the total scattered power from the regular, smooth, convex parts of the 
scatterer. 
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• BB0: Denotes the total scattered power for the target’s irregular, rough, non-conex 
depolarizing components. 

• A0+ B0: Gives roughly the total scattered power. 

• BB0+B: Total symmetric depolarized power. 

• BB0-B: Total non-symmetric depolarized power. 

• C, D: Depolarization components of symmetric targets 

o C: Generator of target global shape (Linear). 

o D: Generator of target local shape (Curvature). 

• E, F: Depolarization components due to non-symmetries 

o E: Generator of target local twist (Torsion). 

o F: Generator of target global twist (Helicity). 

• G, H: Coupling terms between target’s symmetric and non-symmetric terms 

o G: Generator of target local coupling (Glue). 

o H: Generator of target global coupling (Orientation). 

The phenomenological Huynen decomposition expresses the measured covariance matrix 
[ ]3T  as follows 

[ ] [ ] [ ]3 0 NT T T= +  (73)

The matrix [ ]0T  refers to a pure target, that is, a target which can be also completely 
characterized by a corresponding scattering matrix. Its parameterization is 

[ ]
0

0 0

0

2

T T T T

T T T T

A C j D H j G
T C j D B B E jF

H j G E jF B B

⎡ ⎤− +
⎢ ⎥= + + +⎢ ⎥
⎢ ⎥− + −⎣ ⎦

 (74)

Consequently, [ ]0T  presents rank 1. The matrix [ ]NT  is called N-target (for symmetric 

targets) and it corresponds to a distributed scatterer. Since [ ]NT  does not have rank equal to 

1, it does not present an equivalent scattering matrix. The parameterization of [ ]NT , given 

(73) and (74), is 

[ ] 0

0

0 0 0
0
0

N N N N

N N N N

T B B E NjF
E jF B B

⎡ ⎤
⎢ ⎥= + +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

 (75)

One on the main properties of the N-target [ ]NT  is that it is invariant under rotations of the 

antenna coordinate system about the line of sight, i.e., it is roll-invariant. Mathematically, this 
property can be expressed as  
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( ) [ ] 1

3 3

0

0

1 0 0 0 0 0 1 0 0
0 cos 2 sin 2 0 0 cos 2 sin 2
0 sin 2 cos2 0 0 sin 2 cos2

R R
N N

N N N N

N N N N

T U T U

B B E jF
E jF B B

θ

θ θ θ θ
θ θ θ

−
⎡ ⎤ ⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦θ

−
(76)

where ( )NT θ⎡⎣ ⎤⎦  has the form 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0

0

0 0 0
0
0

N N N N

N N N N

T B B E jF
E jF B B

Nθ θ θ θ θ
θ θ θ

⎡ ⎤
⎢ ⎥⎡ ⎤ = + +⎣ ⎦ ⎢ ⎥
⎢ ⎥+ −⎣ ⎦θ

 (77)

As it can be observed, the rotated N-target (77) presents the same structure as the original N-
target (75). 

02 A 0B B+  

 
( )2 2

02C D A+  
 

( )2 2
02H G A+  

20 



Polarimetric Decompositions 

-15dB 0dB-30dB -15dB 0dB-30dB  

 
02 A    ( )2 2

02C D A+    ( )2 2
02H G A+  

Figure 8 Elements of the parameterization of the coherency matrix provided by the Huynen decomposition. 

4.2.3.2 Barnes Decomposition and Uniqueness of the Hyunen Decomposition 

As given by (73), the Huynen decomposition factorizes the measured scattering matrix into a 
rank 1 pure target [ ]0T  and into a distributed N-target [ ]NT . [ ]NT  is characterized by 

presenting a rank larger than 1 and being roll-invariant.  

In terms of spaces of vectors, the fact that [ ]NT  is roll-invariant can be interpreted as the 

fact that the vector space generated by [ ]NT  and the vector space generated by the pure 

target [ ]0T  are mutually orthogonal. Additionally this orthogonality is maintained under 
rotations about the line of sight. Therefore, the question which arises at this point is that 
whether the structure proposed by Huynen, (73), is unique or not, in the sense that whether a 
different decomposition with the same structure is possible or not.  

Given an arbitrary vector q, it belongs to the orthogonal space of the rotated N-target, i.e., the 
space generated by the pure target [ ]0T  if 

( ) [ ] 1

3 30 0R R
N NT q U T U qθ

−
⎡ ⎤ ⎡ ⎤⎡ ⎤ = ⇒ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (78)

The condition imposed by (78) is accomplished for any vector q such that 
1

3
RU q qλ

−
⎡ ⎤ =⎣ ⎦  (79)

Eq. (79) indicates that q is an eigenvector of the matrix 
1

3
RU

−
⎡ ⎤⎣ ⎦ . This matrix presents the 

following three eigenvectors 
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1 2 3

1 0
1 10 1
2 2

0 1
q q q

j

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0
j  (80)

Consequently, (78), (79) and (80) show that there exist three ways in which the measured 
covariance matrix [ ]3T  can be factorized into a pure target [ ]0T  and a distributed N-target 

[ ]NT , as proposed by Huynen in (73). 

The Huynen type decomposition, fruit of choosing the vector q1, to generate the orthogonal 
space of the distributed N-target, corresponds to the original decomposition proposed by 
Huynen, in which the pure target [ ]0T  presents the structure given by (74) and the N-target 

has the structure given at (75). The normalized target vector corresponding to [ ]0T  for q1 has 
the following structure 

[ ]
[ ]

0
1

01 *
01 1

2
1

2T

A
T q

k C
Aq T q H j G

j D
⎡ ⎤
⎢ ⎥= = +⎢ ⎥
⎢ ⎥−⎣ ⎦

 (81)

In this case, the target vector (81) correspond to such targets where Shh+Svv↑0. The 
normalized targets vectors corresponding to q2 and q3 are respectively 

[ ]
[ ] ( )

2
02 0*

02 2
0

1
2T

C G j H j D
T q

k B
B Fq T q

B F j E
E j B j B j F

⎡ ⎤− + −
⎢ ⎥= = + − +⎢ ⎥− ⎢ ⎥− − −⎣ ⎦

 (82)

[ ]
[ ] ( )

3
03 0*

03 3
0

1
2T

H D j C j G
T q

k E j B j B j F
B Fq T q B B F j E

⎡ ⎤+ + +
⎢ ⎥= = + + +⎢ ⎥+ ⎢ ⎥− + +⎣ ⎦

 (83)

The target vectors in (82) and (83) are associated with helical type scattering behaviors. 
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Figure 9  Images concerning the Barnes decomposition. 

4.2.3.3 Interpretation of the Huynen and Barnes Decompositions 

As given by (73), the Huynen decomposition has to be interpreted in terms of the pure target 
[ ]0T  and the distributed N-target [ ]NT . The idea behind the Huynen decomposition is to 

extract, from the measured covariance matrix, a scattering mechanism which can be 
characterized by a single scattering matrix. The remainder, which is also a true covariance 
matrix is considered as a noise component. 

Due to the nature of the decomposition itself, it is reasonable to use the Huynen 
decomposition to analyze human-made areas. This type or areas are characterized by 
presenting a high density of pure targets, which can be studied, then, by the Huynen 
decomposition. On the contrary, natural scenes are dominated by distributed scatterers. The 
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structure of the Huynen decomposition tends to consider this type of targets as a noise 
component. 

4.2.4 Eigenvector-Eigenvalue based Decomposition 

4.2.4.1 Description of the Eigenvector-Eigenvalue Decomposition 

The eigenvector-eigenvalue based decomposition is based on the eigen decomposition of the 
coherency matrix [ ]3T . According to the eigen decomposition theorem, the 3×3 Hermitian 

matrix [ ]3T  can be decomposed as follows 

[ ] [ ][ ][ ] 1
3 3 3 3T U U −= Σ  (84)

The 3×3, real, diagonal matrix [ ]3Σ  contains the eigenvalues of [ ]3T  

[ ]
1

3 2

3

0 0
0 0
0 0

λ
λ

λ

⎡ ⎤
⎢ ⎥Σ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (85)

where 1 2 3 0λ λ λ∞ > > > > . 

The 3×3 unitary matrix [ ]3U  contains the eigenvectors iu for i=1,2,3 of [ ]3T  

[ ] [ ]3 1 2U u u u= 3  (86)

The eigenvectors iu for i=1,2,3 of [ ]3T  can be formulated as follows 

cos sin cos sin cosi i
Tj j

i i i i i iu e δ γα α β α β e⎡ ⎤= ⎣ ⎦  (87)

Considering the expressions (85) and (86), the eigen decomposition of [ ]3T , i.e., (84), can 

be written as follows 

[ ]
3

*
3

1

T
i i i

j
T uλ

=

=∑ u  (88)

where the symbol *T stands for complex conjugate. As (88) shows, the rank 3 matrix  [ ]3T  

can be decomposed as the combination of three rank 1 coherency matrices formed as  

[ ] *
3

T
i ii

T u u=  (89)

which can be related to the pure scattering mechanisms given at (87). 

The eigenvalues (85) and the eigenvectors (86) are considered as the primary parameters of 
the eigen decomposition of [ ]3T . In order to simplify the analysis of the physical 

information provided by this eigen decomposition, three secondary parameters are defined as 
a function of the eigenvalues and the eigenvectors of [ ]3T : 
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• Entropy 

( )
3

3 3
1

1

log i
i i i

i
k

k

H p p p λ

λ=

=

= − =∑
∑

 
(90)

where pi, also called the probability of the eigenvalue λi, represent the relative importance 
of this eigenvalue respect to the total scattered power, since 

3
2 2 2

1

2hh vv hv k
k

SPAN S S S λ
=

= + + = ∑  (91)

• Anisotropy 

2 3

2 3

A λ λ
λ λ

−
=

+
 (92)

• Mean alpha angle 
3

1
i i

i
pα α

=

=∑  (93)

The eigen decomposition of the coherency matrix is also referred as the H/A/α decomposition. 

4.2.4.2 Interpretation of the Eigenvector-Eigenvalue Decomposition 

The interpretation of the information provided by the eigen decomposition of the coherency 
matrix must be performed in terms of the eigenvalues and eigenvectors of the decomposition 
or in terms of H/A/α. Nevertheless, both interpretations have to be considered as 
complementary. 

The interpretation of the scattering mechanisms given by the eigenvectors of the 
decomposition, iu for i=1,2,3, i.e., (87), is performed by means of a mean dominant 
mechanism which can be defined as follows 

0 cos sin cos sin cos
Tjju e γδλ α α β α β⎡ ⎤= ⎣ ⎦e  (94)

where the remaining average angles are defined in the same way as α
3 3 3

1 1
i i i i i i

i i i

p p
1

pβ β δ δ γ γ
= = =

= = =∑ ∑ ∑  (95)

The mean magnitude of the mechanism is obtained as  
3

1
i i

i

pλ λ
=

= ∑  (96)

An example of the mean scattering mechanism can be observed in Figure 10. 
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( )cosλ α   ( ) ( )sin cosλ α β   ( ) ( )sin sinλ α β  

Figure 10 Main scattering mechanism provided by the eigenvector-eigenvalue based decomposition.. 

 
The study of the mechanism given in (94) is mainly performed through the interpretation of 
the mean alpha angle, since its values can be easily related with the physics behind the 
scattering process. The next list reports the interpretation of α: 

• α→0: The scattering corresponds to single-bounce scattering produced by a rough 
surface. 

• α→π/4: The scattering mechanism corresponds to volume scattering. 
• α→π/2: The scattering mechanism is due to double-bounce scattering. 

The second part in the interpretation of the eigen decomposition is performed by studying the 
value of the eigenvalues of the decomposition. A given eigenvalue corresponds to the 
associated scattered power to the corresponding eigenvector. Consequently, the value of the 
eigenvalue gives the importance of the corresponding eigenvector or scattering mechanism. 
The ensemble of scattering mechanisms is studied by means of the entropy H and the 
anisotropy A. 
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Figure 11 Entropy (H) and Anisotropy (A) values for four different configurations of the eigenvalues. 
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The entropy H determines the degree of randomness of the scattering process, which can be 
also interpreted as the degree of statistical disorder. In this way: 

• H→0:  

1 2 0 0SPAN 3λ λ λ= = =  (97)

Consequently, the scattering matrix [ ]3T  presents rank 1 and the scattering process 

corresponds to a pure target. 
• H→1:  

1 2 33 3SPAN SPAN SPAN 3λ λ λ= = =  (98)

In this situation, the scattering matrix [ ]3T  presents rank 3, that is, the scattering process 

is due to the combination of three pure targets. Consequently, [ ]3T  corresponds to the 

response of a distributed target. 
• 0<H<1: In this case, the final scattering mechanism given by [ ]3T  results from the 

combination of the three pure targets given by iu for i=1,2,3, but weighted by the 
corresponding eigenvalue. 

Figure 11 presents four different configurations of the eigenvalues and the corresponding 
entropy values. 
The anisotropy A, (92), is a parameter complementary to the entropy. The anisotropy 
measures the relative importance of the second and the third eigenvalues of the eigen 
decomposition. From a practical point of view, the anisotropy can be employed as a source of 
discrimination only when H>0.7. The reason is that for lower entropies, the second and third 
eigenvalues are highly affected by noise. Consequently, the anisotropy is also very noisy. 
Again Figure 11 presents the anisotropy value for four different configurations of the 
eigenvalues. In the figure, it can be clearly observe the way anisotropy discriminate two 
different configurations presenting the same value of entropy. 
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Figure 12 Entropy (H), Anisotropy (A) and alpha (α) images. 
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