Do It Yourself 6

ENVISAT/ASAR Dual Polarisation Case

The objectives of this sixth *Do It Yourself* propose a complete process of an ENVISAT / ASAR dual polarimetric data set (APP mode).

1. EXTRACT AND VISUALIZE AN APP FORMAT DATA SET

An ASAR APP file is located in the ~/POLSAR_DATA/ASAR directory

- Set ~/POLSAR_DATA/ASAR as the main directory :

Click Environment

Figure 1 Main directory setting.

1.1 Import an APP file

Click Import → Input APP file

Select the desired input APP file

Run

Figure 2 APP data import.

New files, corresponding to the APP file description headers, have been created in the ~/POLSAR_DATA/ASAR directory

Figure 3 APP format data file headers.

Header files may be edited using common text editors or doing

Click Import → Header analysis

```
<u>~</u>
                  ■ Wrap Text Mode
                                                                                Exit
GENERAL SUMMARY
FIRST_ZERO_DOPPLER_TIME =
ATTACH FLAG = 0
LAST_ZERO_DOPPLER_TIME =
WORK_ORDER_ID = 5342
TIME DIFF = 0.312787

SWATH ID = IS2

RANGE SPACING = 12.500000

AZIMUTH SPACING = 12.500000
LINE_TIME_INTERVAL = 0.001873
NUM_OUTPUT_LINES = 8129
NUM_SAMPLES_PER_LINE = 8425
DATA_TYPE = UWORD
IMAGE PROCESSING SUMMARY
           DATA_ANALYSIS_FLAG = 1
ANT_ELEV_CORR_FLAG = 1
           CHIRP_EXTRACT_FLAG = 1
           SRGR FLAG = 1
           DOP\_\overline{C}EN\_FLAG = 1
           DOP_AMB_FLAG = 0
RANGE_SPREAD_COMP_FLAG = 1
           DETECTED FLAG = 1
           LOOK_SUM_FLAG = 1
RMS_EQUAL_FLAG = 0
           ANT_SCAL_FLAG = 0
           VGA_COM_ECHO_FLAG = 1
VGA_COM_CAL_FLAG = 1
VGA_COM_NOM_TIME_FLAG = 1
           GM_RANGE_COMP_INV_FILT_FLAG = 0
RAW DATA ANALYSIS INFORMATION
           RAW_DATA_ANALYSIS[0]
                       \overline{N}UM GAPS = 0
```

Figure 4 Example of header edition.

1.2 Visualize a quick-look

PolSARpro offers the possibility to first visualize a low resolution version of the image

Click Import → Quick look

Figure 5 APP format data quick look.

1.3 Extract a sub-image

A sub part of the data set may be extracted from the ASAR app file using a graphic interface.

Click Extract → Sub area

A graphic interface permits to select a sub-area and extract it

Figure 6 Selection of a sub-area an the quick look image.

A visual interface permits to refine the extracted area coordinates

Figure 7 Sub-area extraction interface.

Once the extraction is validated, two intensity binary files are created, whose name may vary according to the PP configuration. In this case, the intensity files are

- ~/POLSAR_DATA/ASAR/I11.bin
- ~/POLSAR_DATA/ASAR/I21.bin

2. FILTER AND VISUALIZE AN INTENSITY DATA SET

2.1 Apply a speckle filter

A lee filter is run on the intensity data sets

Click Process → (Ixx,Ixy) → Speckle Filter → J.S. Lee Refined Filter

Figure 8 Intensity Lee filter interface.

A new directory, ~/POLSAR_DATA/ASAR_LEE/, has been created and contains intensity binary files.

Figure 9 Contents of the filtered data directory.

2.2 Visualize filtered intensities

The joint intensity information may be visualized by building a color-coded image Click Display \rightarrow (lxx,lxy) \rightarrow Creat RGB file \rightarrow J.S. Lee Refined Filter

Figure 10 Intensity RGB file . creation interface.

A new image file is created under the current directory

Figure 11 Filtered data directory contents.

The resulting image may be displayed using PolSARpro visualization tool

Figure 12 Filtered intensity data color coded image.

3. SUPERVISED CLASSIFICATION OF FILTERED INTENSITY IMAGES

A supervised classification process is run over the selected sub-area $\text{Click Process } \rightarrow \text{(lxx,lxy)} \rightarrow \text{Wishart Unsupervised classification}$

Figure 13 Unsupervised classification interface.

The first step of the classification consists in defining a training data set using a graphic editor.

Click Graphic editor

Polsarpro asks then to provide a bmp image file for the graphic selection

The propose file is ~/POLSAR_DATA/ASAR/ASAR_RGB1.bmp

Figure 14 Training class selection tool.

A class may owe several areas and areas may be delimited by boxes or polygons

Figure 15 Selected areas.

The selected training area are then saved and the segmentation is run.

Click Run Training Process

The training cluster covariance matrices are built

Click Run

The segmentation process produces several files

Figure 16 Directory content after segmenation

The main classification results are

- the classified image supervised_class_3.bmp
- the initial and segmented training cluster sets
- the confusion matrix

Figure 17 Classified image.

Figure 18 Training cluster set initial (left) segmented (right).

Figure 19 Confusion matrix.