



# v $\vec{E}(z,t)$ x $\hat{z}$ POL-SAR CLASSIFICATION



© IETR K E. Pottier, L. Ferro-Famil (01/2004)



# **DATA INVERSION - APPROACH**





QUANTITATIVE ANALYSIS



PARAMETERS



50



### **QUALITATIVE ANALYSIS**









# **POLARIMETRIC REMOTE SENSING**













UNIVERSITE DE RENINES

**Target Vector** 

$$\underline{X} = \begin{bmatrix} S_{HH} & \sqrt{2}S_{HV} & S_{VV} \end{bmatrix}^T \qquad P(\underline{X}) = \frac{1}{\pi^3 \| [C] \|} e^{-\underline{X}^{*T} [C]^{-1} \underline{X}}$$

$$\underline{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{HH} + S_{VV} & S_{HH} - S_{VV} & 2S_{HV} \end{bmatrix}^T \qquad P(\underline{k}) = \frac{1}{\pi^3 |[T]|} e^{-\underline{k}^{*T} [T]^{-1} \underline{k}}$$

$$\langle [T] \rangle = \frac{1}{N} \sum_{i=1}^{N} \underline{k}_{i} \cdot \underline{k}_{i}^{*T} = \frac{1}{N} \sum_{i=1}^{N} [T_{i}]$$

$$P(\langle [T] \rangle / [T_{m}]) = \frac{L^{Lp} |\langle [T] \rangle|^{L-p} e^{-LTr([T_{m}]^{-1} \langle [T] \rangle)}}{\pi^{\frac{p(p-1)}{2}} \Gamma(L) ... \Gamma(L-p+1) [T_{m}]^{L}}$$

$$COMPLEX WISHART DISTRIBUTION$$

$$L: Number of Look p: Polarimetric Dimension$$







$$P(\langle [T] \rangle / [T_m]) = \frac{L^{Lp} |\langle [T] \rangle|^{L-p} e^{-LTr([T_m]^{-1} \langle [T] \rangle)}}{\pi^{\frac{p(p-1)}{2}} \Gamma(L) \dots \Gamma(L-p+1) [T_m]^L}$$

### **SUPERVISED WISHART CLASSIFIER (Lee 1994)**

#### **BAYES MAXIMUM LIKELIHOOD CLASSIFICATION PROCEDURE**

$$\langle [T] \rangle \in [T_m]$$
 if  $d_m(\langle [T] \rangle) < d_j(\langle [T] \rangle)$   $\forall j \neq m$ 

with

© IETR CANCE E. Pottier, L. Ferro-Famil (01/2004)

$$d_m(\langle [T] \rangle) = LTr([T_m]^{-1} \langle [T] \rangle) + L\ln([T_m]) - \ln(P([T_m])) + K$$

cys inse O











 $2A_0 \qquad B_0 + B \qquad B_0 - B$ 



© IETR E. Pottier, L. Ferro-Famil (01/2004)





#### FULLY POLARIMETRIC DATA CLASSIFICATION



Fully polarimetric coherent data segmentation

#### **Training areas definition quality**



User defined training areas



**Classified training areas** 

#### **CONFUSION MATRIX**









#### Courtesy of Dr J.S Lee



 $2A_0 \qquad B_0 + B \qquad B_0 - B$ 

JPL AIRSAR P-L-C Band Flevoland Data







Training Sets / Reference map







Courtesy of Dr J.S Lee







 $2A_0 \qquad B_0 + B \qquad B_0 - B$ 

JPL AIRSAR L-Band Flevoland Data







#### Courtesy of Dr J.S Lee



 $2A_0 \qquad B_0 + B \qquad B_0 - B$ 





L-band (81.63%)







#### Courtesy of Dr J.S Lee



 $2A_0 \qquad B_0 + B \qquad B_0 - B$ 

JPL AIRSAR L-Band Flevoland Data



P-band (71.37%)







#### Courtesy of Dr J.S Lee



 $2A_0 \qquad B_0 + B \qquad B_0 - B$ 

JPL AIRSAR L-Band Flevoland Data













# Quantitative Comparison Fully Polarimetric versus Dual Polarizations

NSP INSP







## SUPERVISED CLASSIFIER



UNVERSITE DE RENNES

#### Courtesy of Dr J.S Lee



C-band Fully Pol. (66.55%)



C-band HH and VV Intensities (37.22%)



C-band complex HH and VV (55.00%)







### **SUPERVISED CLASSIFIER**



#### Courtesy of Dr J.S Lee



L-band Fully Pol. (81.63%)



L-band HH and VV Intensities (56.35%)



L-band complex HH and VV (80.91%)



Reference map for comparison







#### Courtesy of Dr J.S Lee

|           | Fully        | Complex | Intensity | Complex | Intensity | Complex | Intensity |
|-----------|--------------|---------|-----------|---------|-----------|---------|-----------|
|           | Polarimetric | HH, HV  | HH, HV    | HH, VV  | HH, VV    | VV, HV  | VV, HV    |
| Stem Bean | 95.32        | 51.16   | 63.27     | 90.64   | 61.73     | 35.97   | 31.29     |
| Forest    | 81.07        | 66.73   | 68.39     | 75.75   | 33.83     | 60.05   | 60.91     |
| Potatoes  | 82.89        | 67.53   | 66.36     | 81.52   | 49.35     | 54.40   | 59.15     |
| Lucerne   | 97.91        | 39.29   | 38.23     | 99.26   | 65.15     | 67.49   | 65.30     |
| Wheat     | 64.80        | 49.77   | 44.27     | 68.02   | 53.72     | 49.43   | 41.65     |
| Bare Soil | 99.36        | 90.04   | 82.86     | 98.42   | 93.15     | 90.93   | 63.74     |
| Beet      | 89.26        | 68.80   | 66.36     | 86.22   | 81.98     | 75.94   | 74.77     |
| Rape Seed | 89.05        | 55.01   | 53.23     | 87.18   | 49.85     | 82.31   | 77.12     |
| Peas      | 86.47        | 50.77   | 39.25     | 84.59   | 65.21     | 81.82   | 79.59     |
| Grass     | 91.05        | 66.44   | 65.06     | 90.13   | 71.08     | 75.36   | 75.19     |
| Water     | 100          | 90.39   | 87.33     | 100     | 99.86     | 96.30   | 70.53     |
| TOTAL     | 81.63        | 59.16   | 55.38     | 80.91   | 56.35     | 64.72   | 60.12     |

### **L-Band Crop Classification Results**









#### Courtesy of Dr J.S Lee



 $2A_0 \qquad B_0 + B \qquad B_0 - B$ 

JPL AIRSAR P-L-C Band Nezer Forest Data









## **SUPERVISED CLASSIFIER**



#### Courtesy of Dr J.S Lee



C-band Fully Polarimetric (42.96%)



P-band Fully Polarimetric (79.16%)





L-band Fully Polarimetric (64.68%)



**Reference Map** 







## SUPERVISED CLASSIFIER



#### Courtesy of Dr J.S Lee



P-band Complex HH and VV (68.56%)



P-band Complex HH and HV (75.95%)





P-band Intensity HH and VV (65.30%)



P-band Intensity HH and HV (75.44%)









### • For crop classification

- L-band is better than P-Band and C-band
- Dual-pol HH and VV with coherence (Including phase differences) is almost as good as fully polarimetric
- For forest classification
  - P-band is better than L and C
  - HV is the most important polarization
  - Coherence is not important for classification







# **POLARIMETRIC REMOTE SENSING**







# H / $\underline{\alpha}$ CLASSIFICATION



#### H- $\underline{\alpha}$ classification





H /  $\underline{\alpha}$  Classification Space Sub-divised into 9 basic zones

Location of the boundaries is arbitrary and generically

Degree of arbitrariness on the setting of these boundaries

Segmentation is offered merely to illustrate the unsupervised classification strategy and to emphasize the geometrical segmentation of physical scattering processes





© TETR SAME E. Pottier, L. Ferro-Famil (01/2004)



**1994** *LEE et al.* PROPOSED A SUPERVISED ALGORITHM BASED ON THE COMPLEX WISHART DISTRIBUTION FOR THE COMPLEX COVARIANCE / COHERENCY MATRIX.



Dr J.S. LEE N.R. L US -NAVY

- **1998** *LEE et al.* DEVELOPED A COMBINED UNSUPERVISED CLASSIFICATION METHOD THAT USES THE H / <u>a</u> PLANE WHICH INITIALLY CLASSIFIES THE POLSAR IMAGE. THIS SEGMENTED IMAGE IS THEN USED AS TRAINING SETS FOR THE INITIALIZATION OF THE SUPERVISED WISHART CLASSIFIER.
- **1999** INTRODUCTION OF THE ANISOTROPY (*E. POTTIER J.S.LEE*) IMPROVEMENT OF THE CAPABILITY TO DISTINGUISH BETWEEN DIFFERENT CLASSES WHOS CENTERS END IN THE SAME ENTROPY (H) AND ALPHA ( $\alpha$ ) ZONE.





H /  $\underline{\alpha}$  - WISHART CLASSIFIER



#### **k** - mean CLASSIFICATION PROCEDURE





### H / $\underline{\alpha}$ - WISHART CLASSIFIER

C1

C2

C3

C4

C5

C6

C7





 $2A_0 \qquad B_0 + B \qquad B_0 - B$ 

#### **4th ITERATION**





C8







During the classification,the cluster centers can move out their zones or several clusters may end in the same zone

Identification of the terrain type may cause some confusion due to the color scheme

The combined Wishart classifier is extended and complemented with the introduction of the Anisotropy (A)







#### SAN FRANCISCO BAY JPL - AIRSAR L-band 1988



 $2A_0 \qquad B_0 + B \qquad B_0 - B$ 





© IIIR E. Pottier, L. Ferro-Famil (01/2004)





### POLSAR DATA DISTRIBUTION IN THE H / A / $\underline{\alpha}$ SPACE











#### 2 Successive k - mean Classification procedures





# H / A / $\underline{\alpha}$ - WISHART CLASSIFIER



°ks

**INS**A



 $2A_0 \qquad B_0 + B \qquad B_0 - B$ 

#### Wishart H-A- $\underline{\alpha}$ segmentation



















ୢ୰ଽ















°¢¢







#### SAN FRANCISCO BAY JPL - AIRSAR L-band 1988

4th ITERATION





©



# H / A / $\underline{\alpha}$ - WISHART CLASSIFIER







#### SAN FRANCISCO BAY JPL - AIRSAR L-band 1988







 $2A_0 \qquad B_0 + B \qquad B_0 - B$ 





# H / A / $\underline{\alpha}$ - WISHART CLASSIFIER



#### H / $\underline{\alpha}$ and WISHART CLASSIFIER



#### H / A / $\underline{\alpha}$ and WISHART CLASSIFIER





# **POLARIMETRIC REMOTE SENSING**





# Unsupervised Classification Preserving Scattering Mechanisms

J.S. Lee, M.R. Grunes, E. Pottier and L. Ferro-Famil, "Segmentation of polarimetric SAR images that preserves scattering mechanisms" Proceedings of EUSAR2002



DIETR E. Pottier, L. Ferro-Famil (01/2004)





### - Polarimetric SAR (POLSAR) classification

- Complex Wishart distribution (Lee et al., 1994)
- Wishart + Entropy/Alpha (Lee et al., 1999)
- Wishart + Entropy/Alpha/Anisotropy (Pottier and Lee, 2000)
- Deficiency: Wishart classifier is a statistic operator. Pixels in a class can be mixed in scattering mechanisms

### – A new approach

- Preserving scattering property of each pixel based on Freeman and Durden decomposition:
  - Double bounce
  - Surface
  - Volume (Canopy)
- Better stability in convergence
- Automated color rendering





### **FREEMAN DECOMPOSITION**



#### Courtesy of Dr J.S Lee



|HH-VV|, |HV|, |HH+VV|

Freeman and Durden



A. Freeman and S.L. Durden, "A Three-Component Scattering Model for Polarimetric SAR Data" IEEE TGRS, vol. 36, no. 3, May 1998



### **FLOW CHART**







© IIIIR KANK E. Pottier, L. Ferro-Famil (01/2004)





#### Wishart Iteration – After Class Merge

#### **Classification Maps**



Note: Stability insures good convergence









UNIVERSITE DE RENIVES

#### Courtesy of Dr J.S Lee









#### Courtesy of Dr J.S Lee



|HH-VV|, |HV|, |HH+VV|



4<sup>th</sup> Iteration (15 classes)









## **FREEMAN - WISHART CLASSIFIER**



#### Courtesy of Dr J.S Lee



 $2A_0 \qquad B_0 + B \qquad B_0 - B$ 



4<sup>th</sup> Iteration (15 classes)

















© IETR K E. Pottier, L. Ferro-Famil (01/2004)









