대학원 지구정보학 기말시험 ## 담당교수: 이 훈 열 (3~6pm, Monday 21 June 2004. You may answer the questions either in Korean or English, or both.) | 학과 | 학번 | 성명 | | |----|----|----|--| A focused SAR image has the signal $\hat{g} = \exp[-j4\pi R/\lambda]$, where R is the distance between the sensor and the target and λ is the wavelength of the transmitted microwave. - 1. What is the phase of the above signal (5P)? - 2. Describe the physical meaning of the phase in the focused SAR signal (5P). Consider an interferometric SAR configuration as shown in the figure far below (next page). - 3. Describe the phase difference between two SAR observations (interferometric phase), $\phi = \phi_2 \phi_1$, in terms of R_1 , R_2 , B, θ_I , and β , from $\Delta S_1 P S_2$. (10P) - 4. Show that the interferometric phase can be reduced to $\phi = \frac{4\pi}{\lambda} B \sin(\theta_l \beta)$. You need to know that R is several hundred kilometers while the baseline B is no more than several hundred meters. As the ratio B/R is very small, you can drop $(B/R)^2$ term during the derivation. Also you need to know that $\sqrt{1 \pm x} \approx 1 \pm \frac{1}{2} x$ when x is very small. (10P) - 5. Prove that $\phi = \frac{4\pi}{\lambda} B_{//}$, where $B_{//}$ the component of the baseline parallel to the radar look direction. (5P) - 6. Describe the elevation z of the target P, in terms of H, R_1 , and θ_1 . (10P) - 7. Starting from the equations in question 4 and 6, show that the height sensitivity of the interferogram is $\frac{\partial \phi}{\partial z} = \frac{\partial \phi}{\partial \theta} \frac{\partial \theta}{\partial z} = \frac{4\pi B_{\perp}}{\lambda R_1 \sin \theta_l}$, where B_{\perp} is the component of the baseline perpendicular to the radar look direction. (10P) - 8. Given the phase measurement accuracy of the SAR system is $\delta\phi_{sys}$, find the condition of B_{\perp} to make the height resolution δz better than the required height resolution δz_{req} , i.e., $\delta z = \frac{\partial z}{\partial \phi} \delta\phi_{sys} < \delta z_{req} . (10P)$ - 9. Starting from the equations in question 4 and 6, find the interferometric phase fringe number, i.e., the number of 2π phase fringe in slant range is $$k_{\phi} = \frac{1}{2\pi} \frac{\partial \phi}{\partial R_{1}} = \frac{1}{2\pi} \frac{\partial \phi}{\partial \theta} \frac{\partial \theta}{\partial R_{1}} \approx \frac{2B_{\perp}}{\lambda R_{1} \tan \theta_{l}} \quad [\text{m}^{-1}]. \tag{10P}$$ - 10. Given the condition that the interferometric phase fringe number should not exceed one fringe over a slant range resolution δR , i.e., $k_{\phi} < \frac{1}{\delta R}$, limit the B_{\perp} to meet this criterion. (10P) - 11. Combining the limiting conditions of B_{\perp} obtained from questions 8 and 10, describe the workable B_{\perp} of an InSAR system. Note there are more limiting conditions of B_{\perp} than those shown here. (10P) - 12. In which situation you'd happen to be to boast your knowledge of SAR system? (5P) Thank you so much. Can you join us for the dinner tonight? (Y/N)