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Synthetic Aperture Radar
SAR Focusing by 

Rectangular Algorithm
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1. Range Compression

As the vehicle moves along its path, the radar transmits a linear-FM, or “chirp”, pulse
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where, frequency (time derivative of phase) 
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which is a linear function of time over the pulse duration 
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Phase: 
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Frequency: 
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The chirp bandwidth (in range direction) is 
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The multi-pulse real transmitted signal is then
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where 
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 is the pulse repetition period and the sum includes all pulses for which the target is in the radar beam. 

At an arbitrary time t, the radar is at some slant range 
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 at the radar beam centre. The received pulse train is then
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Range compression is to correlate the received pulse with 
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As shown in the figure below, the variation of 
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 within a chirp pulse is very small, so that we can assume that 
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, the distance between the sensor and the target at chirp centre time. This means that the slant range 
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 can be assumed constant during the time of one pulse width. This assumption enables the general two-dimensional compression problem to be de-coupled into a sequence of two one-dimensional compression operations, one in fast time (range) and the other in slow time (azimuth). Since slow time measures a coordinates orthogonal to fast time, this process sequence is 
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The matched filtering becomes:
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The actual integration is not 
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Considering carefully the limit of the integration gives:


1) If 
[image: image34.wmf]p

n

t

t

t

<

-

, then
 
[image: image35.wmf][

]

{

}

(

)

(

)

[

]

{

}

t

d

t

t

K

t

t

f

j

t

t

K

t

t

f

j

a

t

g

n

n

c

t

t

t

t

t

t

t

t

c

n

n

n

p

n

n

p

n

¢

-

¢

+

-

¢

×

-

¢

+

-

¢

-

=

ò

å

-

-

+

+

-

-

-

+

2

/

2

exp

2

/

)

(

)

(

2

exp

)

(

2

2

2

2

2

2

p

p

t

t




2)  else 
[image: image36.wmf]0

)

(

=

t

g

.






(10)
We only evaluate the first case.

[image: image37.wmf][

]

{

}

[

]

{

}

[

]

{

}

[

]

{

}

t

d

t

t

t

K

t

f

j

t

t

t

K

t

f

j

Kt

t

f

j

Kt

t

f

j

a

t

g

n

c

t

t

t

t

t

t

t

t

c

n

n

c

c

n

n

n

p

n

n

p

n

¢

¢

-

¢

+

¢

¢

-

¢

+

¢

-

+

-

×

+

-

-

=

ò

å

-

-

+

+

-

-

-

+

2

/

)

2

(

2

exp

2

/

)

2

(

2

exp

2

/

2

exp

2

/

2

exp

)

(

2

2

2

2

2

2

2

2

p

p

p

p

t

t



[image: image38.wmf][

]

{

}

[

]

t

d

t

t

t

K

j

t

t

K

t

t

f

j

a

n

p

n

n

p

n

t

t

t

t

t

t

t

t

n

n

n

c

n

n

¢

¢

-

-

-

-

=

ò

å

-

-

+

+

-

-

-

+

2

2

2

2

2

2

)

(

2

exp

2

/

)

(

)

(

2

exp

t

t

p

p

 
(11)
Let 
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The integration gives the sinc function:
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Remember it holds if 
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Dropping the summation, the range compressed result of nth pulse, 
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In other form using 
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We assume synchronization of the detailed pulse waveform, that is the radar is coherent. In effect, the term 
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The envelope of this has a 3 dB width (half the maximum power) 



[image: image55.wmf]R

p

B

K

t

1

1

=

=

t

d

.
(18)
This is the slant range time resolution of the SAR system, which corresponds to slant range spatial resolution (or, range resolution in short) as: 
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where  
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 is the range chirp bandwidth. Therefore, a large chirp bandwidth gives enhanced range resolution for a SAR system. Note that the range resolution holds with positive K,  ‘up-chirp’. In case of  ‘down-chirp’, K should be replaced with 
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2.   Azimuth Compression

After range compression, the data is transformed into the azimuth frequency domain via FFT. There are two important parameters for azimuth compression: Doppler centroid frequency 
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 and Doppler rate 
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. They can be derived from the satellite state vectors including satellite’s position and velocity vectors. Sometimes, however, those values need to be recalculated more precisely, which can be done using the data itself. The Doppler centroid frequency 
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 is determined from the data via the clutterlock procedure. The Doppler rate 
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 can be determined by an autofocus procedure using the azimuth subaperture correlation method. Multiple pulse repetition frequency (PRF) ambiguity of Doppler centroid, which is important for range migration, can be solved by the range subaperture correlation method. Azimuth spectral filtering can be applied on two SAR signals forming an interferometric pair to compensate decorrelation from different Doppler centroids of the two images. The signal is then azimuth compressed using the same matched filtering as the case of range compression. A Hamming filter can then be applied to reduce the sidelobe effect similar to the one during the range compression. The following is the detailed procedures for azimuth compression.

Azimuth Matched Filtering

The angular carrier frequency 
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 from the range-compressed signal can be eliminated by demodulation. Selecting the value at 
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The range function 
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 is the speed of the radar platform relative to the target point. 
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The Doppler frequency, by definition, is the time rate of phase 
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We can define the Doppler centroid and Doppler rate at 
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so that 
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The range-compressed signal can be expressed in terms of 
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 and 
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where S is the azimuth integration time. This is a linear FM wave with centre frequency 
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 and frequency rate 
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. The azimuth compression is to compute the correlation
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Similar to range compression, the azimuth compression can be realised approximately using a correlator function
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The output of azimuth compression is then
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Derivation of this equation is similar to that of range compression.
The peak of this pulse occurs at 
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, the target azimuth location. The 3 dB width of this pulse, that determines the azimuth time resolution, is 
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where  
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 is the Doppler bandwidth. The azimuth spatial resolution (or, azimuth resolution) is then 
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From the simple geometry of a radar antenna, with physical length 
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 along track, the nominal beam width is 
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For the geometry of the figure below, given a squint angle 
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, the Doppler parameters can be geometrically determined as 
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In case of a real aperture radar, azimuth resolution changes inversely with the physical length of its antenna as 

[image: image101.wmf]a

c

L

R

x

l

d

=

. For SAR, the Doppler bandwidth is therefore 
[image: image102.wmf]a

s

D

L

V

B

2

=

 and the system azimuth resolution is 



[image: image103.wmf]2

a

L

x

=

d

.
(38)
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 changes in proportion to the physical length of SAR antenna.
(39)

With intensive signal compression processing, high azimuth resolution can be achieved with a SAR in a significantly smaller physical dimension than that in a real aperture radar.
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Appendix A.
Dirac Delta Function
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No such function exists.

Sinc function – one approximate of Dirac Delta Function
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