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Ocean Wave Extraction from RADARSAT Synthetic
Aperture Radar Inter-Look Image Cross-Spectra

Michael Dowd, Paris W. Vachqrsenior Member, IEEH-red W. Dobson, and Richard B. Olsen

Abstract—This study is concerned with the extraction of direc- borne SAR has the potential to add significantly to the existing
tional ocean wave spectra from synthetic aperture radar (SAR) in sjtu global wave observing system, presently comprised of a
image spectra. The statistical estimation problem underlying sparse and irregularly distributed array of wave buoys. SAR-de-

the wave-SAR inverse problem is examined in detail in order to . .
properly quantify the wave information content of SAR. As a rived wave spectra are expected to be useful for validation of,

concrete focus, a data set is considered comprising six RADARSAT and assimilation into, operational wave models [6]. While it is

SAR images co-located with a directional wave buoy off the east evident that SAR holds much promise for observing the ocean
coast of Canada. These SAR data are transformed into inter-look wave spectrum, its full potential has yet to be realized.

image cross-spectra based on two looks at the same ocean scene . - . . - .
separated by 0.4 s. The general problem of wave extraction from The basic physical mechanisms governing SAR Imaglingqu
SAR is cast in terms of a statistical estimation problem that Ocean waves are reasonably well understood [11]. A signifi-
includes the observed SAR spectra, the wave-SAR transform, and cant step forward was realized with the derivation of a closed
Priort;spect(ral wave i?ffl:mation- The central ;0,'9 gf the w?igthtcijng form, nonlinear transform relating the ocean wave spectrum to
unctions (inverse of the error covariances) is demonstrated, as : ;

well as the consequence of approximate (based on the quasilinearthe SAR image §pectrum ([10], see also [14]). This wave-SAR
wave-SAR transform) versus exact linearizations on the conver- transform has since been extended to cover the more general
gence properties of the algorithm. Error estimates are derived and case of the SAR image cross-spectrum [8], [13]. However, a
discussed. This statistical framework is applied to the extraction of number of issues arise when using satellite SAR in a wave ob-
spectral wave information from observed RADARSAT SAR Image g ing system. One fundamental difficulty is its inability to

cross-spectra. A modified wave-SAR transform is used to account . . .
for case-specific geophysical and imaging effects. Analysis of therecord wave induced modulations of the radar cross-section at

residual error of simulated and observed SAR spectra motivates high along-track (azimuth) wavenumbers. Satellite-based SAR
a canonical form for the SAR observation error covariance. Wave typically truncates signals associated with waves having less
estimates are then extracted from the SAR spectra, including {han 100 m wavelengths in azimuth (e.g., [1]). Non-wave geo-

wavenumber dependent error estimates and explicit identification . . . ; - .
of spectral null spaces where the SAR contains no wave informa- physical signals such as wind further modify this azimuth cutoff

tion. Band-limited SAR wave information is also combined with [26], [7]. This latter feature, together with speckle noise (e.g.,
prior (buoy) spectral wave estimates through parameterization of [9]) limits the ability of the basic wave-SAR transform to ac-
the wave spectral shape and use of regularization. count for the full variability found in observed SAR spectra.
Index Terms—Estimation, inverse problems, satellite appli- This has lead to wave-SAR transforms with case-specific mod-
cations, sea surface, spectral domain analysis, surface wavesifications that absorb geophysical effects into the underlying

synthetic aperture radar (SAR). physical parameterizations of the ensemble scattering proper-
ties of the ocean surface [15], [20].
|. INTRODUCTION Wave estimates from observed SAR spectra rely on inversion

of the wave-SAR transform. These SAR-derived wave estimates

I HE potential for extracting ocean surface gravity wave i, ve received much attention in the context of operational wave

the o::c;r;rrllastfrrf]afégr; %gg}str'g;%enrséﬁ rgg?erll(itseASR,gll?mn?iizisogEOdelmg and data assimilation [6], [12]. A key feature of SAR
. iS Its concentration of wave information in specific wavenumber
both current (e.g., ERS-2 and RADARSAT) and planned (e.I y I wavel 'on in spectic wavenu

. . . $ands that are dependent on orbit characteristics, viewing ge-
E.NVI.SAT’ RA.DARSAT'Z)’. have imaging modes, which prc?'ometry, and prevailing sea surface conditions. Data assimila-
vide information on directional ocean wave spectra. Satellit:

fion methods require the ability to systematically compare wave

spectral estimates from a model with those derived from SAR
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estimation framework for wave-SAR inversion that allows TABLE |
for the wave information content of SAR to be quantifie SUMMARY OF THE RADARSAT SAR FARAMETERS AND ENVIRONMENTAL
. . ONDITIONS DURING MASDE. SATELLITE PARAMETERS INCLUDE THE BEAM
on a wavenumber-dependent basis. As a particular foCU@ope, INCIDENCE ANGLE a, AND THE RANGE-TO-VELOCITY RATIO (B/ V).
we examine a set of RADARSAT SAR inter-look image ENVIRONMENTAL PARAMETERS INCLUDE THE SIGNIFICANT WAVE HEIGHT
cross-spectra co-located with a wave buoy off the east coast of g 1 PEA n'jE;f"D o, THe PVERKDV\E/,‘I\;/EELT%?IE;;EK’“’S/I:'EEL\L/YT'ED
Canada. These cross-spectra are based on two images of th&oorbiNaTES WITH0° DENOTING THE AZIMUTH DIRECTION. UNITS
same ocean scene separated by a fraction of a second and offer ARE MKS AND ANGLES ARE IN DEGREES
advant.ages over SAR auto-spectra in terms of speck}e NOit G B o |2V [ T s |00 [0
reduction and the ability to resolve wave propagation directior ; 96/03/20 | 53 329 1123 192 | 28 [ 0.0 115 2574
[8]. We compute and analyze the SAR spectra in terms 0y | 96/03/23 | w1 | 25.7 | 116 |1.88 | 6.3 | 0.021 | 6.9 | 2826
their statistical properties and wave information content. A3 96/03/27 | S4 37.6 | 129 {1.17 | 5.4 | 0.059 | 49 | 1986
general statistical framework is developed for quantitatively 4 96/04/03 § W3 | 42.0 | 137 | 3.15 | 5.9 | 0.008 | 11.9 | 118.9
examining the wave-SAR inverse problem. This approact® | 96/04/06 |83 1 27.6 | 117 | 095530019 |57 | 19.1
encompasses other wave-SAR inversion studies (e.g., [8], [10f 96/04/09 | W1 |312 | 121 |367)71]0043 |15 |1762
[15], [12]). Importantly, it provides for a means to compare and
assess the consequences of the various (and often conflicting
assumptions made in these studies, consequences frequent _ :
obscured by the analytic complexity of the wave-SAR trans-  €ach of the look pairs and smooth through convolution
form. Practical aspects of carrying out the statistically-based ~ With @ Gaussian smoothing kernel.
inverse problem are undertaken based on the observed SHF end result of this procedure is a set of SAR image cross-
image cross-spectra, the buoy wave spectra, and a wave-S#RCtra based on a time separation 6$0.4 s (see [28]).
transform modified to account for case-specific geophysical Comparison of the co-located wave and SAR spectra allows
effects. us to examine the wave modulation of the spectral properties
This paper is organized as follows. Section Il presents SA¥ the normalized radar cross-section of the ocean surface. The
image cross-spectra from RADARSAT, along with co-locatedirectional ocean wave spectrum for the six cases are shown
wave buoy spectra. In Section I, the wave-SAR transform i8 Fig. 1. These spectra are smooth as a result of the spec-
briefly reviewed, and its inversion is examined in detail. Se¢tal processing of the buoy heave, pitch, and roll data. The low
tion IV provides an application of the inversion procedure. Se®avenumber swell is recorded in all cases and case 1 shows a lo-
tion V contains a summary and conclusion. Appendix A pr&ally generated wind sea propagating in a near-range direction.
vides details of the wave-SAR transform, and Appendix B i our treatment of the SAR data, we emphasize its fundamental
troduces the (randor) regression methodology central to oufiature and make no attempt, at this stage, to correct for multi-

%) Calculate raw cross-spectra by averaging the results for

development of wave-SAR inversion. plicative speckle noise or for the falloff of spectral density with
increasing wavenumber [9], [17]. To suppress large-scale, non-
II. OBSERVATIONS wave geophysical signals such as marine boundary layer wind

patterns [25], we have chosen not consider wavenumber regions
o . orresponding to wavelengths 300 m (note that ocean sur-
spectra and co—lqcatec_i situ buoy data coII(_acted during theface gravity wave energy may be present at greater wavelengths,
1996 March/ April Ship Detection Experiment (MASDE)however, our RADARSAT SAR spectra showed nonwave sig-
[24]. Wind and wave _data were collected f“’f" tW_O buoys (lfi'als at these higher wavelengths). Finally, note that buoy and
MINIMET meteorological buoy and Datawell directional Wavqmage spectra differ in that the former is derived from a time-av-

rider buoy) moored near 4_4)'5' G?W'_ Dlrect_longl wave eraged point measurement, while the latter represents an instan-
spectra were processed using a maximum likelihood (erAneous spatial snapshot

method [18]. There were a total of nine available SAR and The real part of the SAR cross-spectra (the coincident
buoy co-locations, but three of the SAR images contained Iitté ectra) are shown in Fig. 2. There is evidence of SAR

discernible wave information. This appeared to be due to Iq aging of the dominant 100-150 m swell, although azimuth

total wave energy combined with a strong azimuth Compon%&venumberyca| > 0.05 nr! (i.e., < 125 m wavelengths) are

to the wave propagauon d|_re.ct|on.. We ignore these CaSfSncated. Note that case 5 images a near-azimuth travelling
hereafter. Details of the remaining six cases are summarize

Table | Qve, and in case 1 the locally generated wind sea is apparent.

h SAT SAR d dinto i | Eeak energy of the SAR and buoy spectra are not always
: The RADARSAT SAR aFa Were processe Into Inter-ook,, |ocated (even after taking account of the gain characteristics
image cross-spectra according to the following procedure:

of the SAR). While a dramatic reduction in speckle noise over
1) separation into five individual looks separated by 293 Hge quto-spectra (not shown) is evident, some broad band noise
2) for each of the pairs (1, 3), (2, 4), and (3, 5): still persists. In theory, speckle noise should be eliminated if it
a) extract 1024< 1024 image region and detrend; s statistically independent between looks [8].
b) calculate modified periodgrams for 5%2512 sub-  To further examine the effect of the multilook processing
regions using a Kaiser window; on the spectral energy and broad band noise, we reprocessed
c) average the modified periodograms; case 5 into five looks, each separatedsby0.15 s. Case 5

In this section, we examine some RADARSAT SAR imag
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Fig. 1. Directional wave spectra collected during MASDE from a wave buoy located atNi483°W. These are in satellite coordinates with the axes
corresponding to the rangé” (cross-track) and azimuthta” (along-track) wavenumbers in radiansn The grayscale denotes the spectral density of wave
height in m.

records a near azimuth travelling wave allowing for assessmeitistical independence between looks. The remaining noise
of the low wavenumber nonwave signals in the range integratgicesses may be residual speckle, or may have a geophysical
spectrum. Fig. 3 shows the range-integrated coincident specirain.

for different time separations. Reduction of the total energy Information on the wave propagation direction resides in
is evident when comparing the auto-spectra £ 0) with the anti-symmetry of the imaginary part of the SAR image
the cross-spectrar (> 0). With increasing time separationcross-spectra (the quadrature spectra) shown in Fig. 4. The
the total energy declines to a stable level after~ 0.3 s. overall magnitude of the quadrature spectra are generally
This stabilization indicates that looks no longer overlap (in tHess than the coincident spectra and are more variable. For
frequency domain) and suggests a minimal value-farensure cases 2, 4, and 6, the anti-symmetry is readily evident in
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Fig. 2. Real part of the RADARSAT SAR image cross-spectra derived from two looks at the same ocean scene, separated by 0.4 s in time. The axes follow Fig. 1
The grayscale corresponds to spectral density of the normalized radar cross-section. Note that thie reg®n300 m is marked with dots to emphasize the
lack of reliable ocean wave information here.

the spectral regions containing wave information, but for th& the negative phase regions match the wave propagation
remaining cases, it is not so clear. Coherency spectra welieection. The direction of wave propagation in cases 3 and
also calculated after correcting the auto-spectra for specBeare less clear. For the various cases, values for the mean
and spectral falloff with increasing wavenumber [17]. Thegghase in these wavenumber regions are quite different (for a
coherency spectra are used to separate the (coherent) wEl@ m deep water wave, we expect a phase-0f3 radians
signal from (incoherent) noise processes. Fig. 5 shows theer the 0.4 s time separation between looks). This may be
phase spectra for regions with coherency greater than 0.6 (tmiplained by sampling variability coupled with the weak phase
threshold coherency represents a type | error probability sijnature implied by the short time separation of the two-look
0.01 in a test for zero coherency [22]). In cases 1, 2, 4, aBd\R imagery (see Section IlI-A).
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Fig. 3. Range-integrated SAR coincident spectra from case 5. The image was reprocessed into five looks, each with an timersep@rafian The various
curves denote the spectra for the different time separations as indicated. All spectra are normalized by the maximum value of the auto-spewirgig-dlo
the region|k.| < 27/300 m is left blank.

lll. THEORY where K. is an (equivalent rectangular width) azimuth
A. Forward Map cutoff' wavenumber and_ depends .oW(k) ﬁthrough the
) ) o _ velocity bunching covariance functiop.4.4(#) such that
The theoretical basis for examining the relation between the  _ 7/pa4(0) (see Appendix A). TheS;(k) denote
ocean wave spectrum and the SAR image spectrum is giM@fns in the expansion with subscripts referring to the order of
by the closed form, integral transform first proposed by [10honjinearity. The importance of higher order terms in (2) scales
This has since been extended to the more general case of\{fifi the standard deviation of the azimuth shift due to velocity

SAR image cross-spectrum [8]. The wave-SAR transform m@ynching and are expected to play a role for satellite platforms

be represented as in which R/V exceeds 100 s [14]. Reference [15] demonstrates
o o that the effect of nonlinearity on the SAR spectrum is manifest
Su(k) = h {W(k)5 cﬂ'}' 1) as spectral spreading of energy and the generation of higher

. order harmonics.
Here,W(k) is the directional ocean wave spectrum. The vector A yseful simplification of the wave-SAR transform is the
wavenumbet: = (k,, ko) is in satellite coordinates, with,  quasilinear approximation. This is obtained by considering only
and k, denoting the cross-track (range) and along-track (aghe leading order terrﬁl(@ in (2), i.e., that part of the trans-
imuth) wavenumbers, respectively. Therepresent parametersform that is a linear i (k). For the cross-spectral case, this
of the wave-SAR map, some of which may be readily speghkes the form
fied based on satellite properties and others that depend on pre-
vailing environmental conditions (e.g., wind) that modify the qu(E)

scattering properties of the air—sea interface. The nonlinear op- ~ _ expl—(ka/K.)2}
eratorh{-} represents the wave-SAR transform, and its func- L i(;‘r - o
tional representation is given in Appendix 8,;(%) is the SAR : (‘I’(k)W(/f)G + VU (—k)W(-k)e ) 3)

image cross-spectrum predicted using this nonlinear map.
To facilitate implementation, the wave-SAR transform (1) iwhere W (%) is defined in Appendix A and depends on the til,
often cast in terms of a series expansion (e.g., [10]) hydrodynamic and velocity bunching modulation of the radar
o cross section by the ocean gravity wave field. The tefifi rep-
Su(R) = exp{—m(kq /K.)?} Z ) (2) resents phase shifting of the wave spectral components (wave
P translation) over the separation timéetween looks. The deep
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Fig. 4. Imaginary part of RADARSAT SAR image cross-spectra derived from two looks at the same ocean scene, separated by 0.4 s in time. The axes follow
Fig. 1. The grayscale corresponds to spectral density of the normalized radar cross section. The dotted area follows Fig. 2.

water dispersion relation for surface gravity waves gives Fig. 6 shows the normalized quasilinear map for an input
(g|k))*/2. The quasilinear limit represents a weakly nonlineawhite wave spectrumi¥ (k) = 1) with = = 0. This approx-
approximation to the full nonlinear transform. While it is notmates the transfer function between the wave and SAR auto-
strictly valid for RADARSAT (R/V ~120s), there is some sug-spectra or, alternatively, the gain window through which the
gestion that its utility may be extended by straightforward mo&AR sees the ocean wave spectrum. Its main features are the
ifications to the basic wave-SAR map (e.g., [15], [26]). In angzimuth cutoff for|k,| > 0.05 nT!, and near zero regions
case, we adopt the philosophy that the analytically and numeear the origin. The modification for the cross-spectral case
ically much simpler quasilinear transform is a useful approx{= > 0) may also be readily ascertained from Fig. 6. For our
mation, and in Section IlI-B demonstrate its central role as &ADARSAT casest ~0.4 s and we consider the wavenumber
intermediary in the inversion of the fully nonlinear transform. domain|, |, || < 0.15 nTL. According to (3), the coincident
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Fig.5. Phase spectra for RADARSAT SAR. For plotting purposes, regions of the phase spectrum having a ceh@igheye been set equal to zero (see text).
The axes follow Fig. 1. The grayscale indicates the phase in radians.

spectrum is just the auto-spectrum multiplieddoy(wr). This  cross-spectra of Figs. 2 and 4, and the variability of the phase
corresponds to Fig. 6 multiplied by a factor varying from 1 at thestimates of Fig. 5. The nonlinear transform acts to couple the
origin to 0.8 near the edges. Similarly, the quadrature spectrueal and imaginary parts.

has asin(+w7) in (3). The multiplication factor is zero at the Practical (numerical) implementation of the wave-SAR
origin and rises to less than 1/2 the value of the autospectruntransform is carried out in a discrete vector space. The discrete
the edges. Thus, the coincident spectrum is larger in magnitugdave-SAR transform may be represented as

and slightly biased toward low wavenumber information, while = h{w} @)

the quadrature spectrum is smaller in magnitude and biased to- Sl =MW

ward higher wavenumber information. This fact, coupled wittvherew is a vector containing the wave spectrW(E) evalu-
sampling variability, helps explain the observed RADARSARted over alattice of range and azimuth wavenumbers and vector-
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Fig. 6. Gain spectrum associated with the basic quasilinear wave to SAR transform (see Appendix A). This is based on RADARSAT SAR parameters of Table |
and assumes an input white wave spectrum witk= 0. An azimuth cutoff wavelength of 125 m has been chosen as typical for RADARSAT. The grayscale
corresponds to normalized power spectral density of the radar cross section.

ized. The nonlinear vector operalef- } denotes the wave-SAR timation involves compensating for case-specific effects in
transform, and,,; isthe predicted SAR (auto- or cross-) spectrurthe wave-SAR transform, and it is treated in Section IV. State
defined overthe same wavenumber grid. We assume, without lestimation deals directly with the wave information content of
of generality, that all quantities in (4) are real valued (real artle SAR and is examined in detail below.
imaginary parts of the complex valued SAR cross-spectrum cariThe state estimation problem is governed by the following
be treated as separate elements,in Note also that the regres-system of regression equations
sion-based deyelopment of Section I11-B may be cast in equiva- s = h{w} +e,, W, =Wt e,. (5)
lentterms for either the real or complex case [3]). o
The wave-SAR transform is often modified to take accourfthe first equation describes the measurement processswith
nonwave processes which influence the observed spectréififoting the observed SAR (auto- or cross-) spectrumvand
through changes in the scattering properties of the air—g8& underlying true value of the wave spectrum. The zero-mean
interface. For instance, [26] points out the role of wind effecf§easurement errex, has covarianc&,. The second equation
on the scene coherence time and suggests fitting for the azima@gounts for the prior wave estimatg,, and its zero-mean error
cutoff K. on a case dependent basis. Reference [20] abso¥bgiven ase, with covariance®,, (the assumption of unbiased
wind effects into the real aperture radar modulation transfefror could be relaxed). Note that we make use of a wide sense
functions which underlie the wave-SAR transform. Referen€¥/S) assumption about the error processes, wherein no distribu-
[15] derives a modified wave-SAR transform to account fdional assumptions are made excepting the specification of the
point target spreading due to finite sensor resolution. Sufitst and second moments.
case dependent modifications to the wave-SAR transform areRecovering a minimum variance estinfater the underlying
examined in Section IV. true wave spectrum from (5) leads to the minimization of a cost
function
B. Inversion of the Forward Map J =[s — h{w}]*S*[s — hiw}]

The general inverse problem associated with estimating +[wp—w]TE;1[wp—w]
waves from SAR has two main elements: 1) a parameter

imati i i ini =ls = b{wHIG-1 + [[wp = wli§ (6)
estimation problem associated with determining unknown or =5 p =5

poorly specified quantities such &5 and 2) a state estimationith respect tow? . The first term inJ is the weighted squared
problem associated with the recovery of the wave spectrughservation erroel = Le, and represents both nonwave noise
Estimation of these unknowns relies on the observed SAR

spectra and. where available prior knowledge on the WaVéML estimates would require considering the probability density functions
’ ’ - ande,. However it is notable that under a wide variety of distributional

- of e
spectrum (e.g., from a wave _modgl). We consider Separatgl\éumptions, practical implementation of nonlinear regression leads to the use
the parameter and state estimation problems. Parameter oggeneralized (or iteratively reweighted) least squares estimators, e.g., [3], [23].
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processes in the SAR spectrum as well as model errors in th&he general development presented here makes clear that
wave-SAR transform. The second term is the weighted squatbdee quantities play a key role in wave-SAR inversidi),,
error of the prior wave estima@’”E;lep and represents devi- 3,, andH. As remarked upon previousl}, andX,, influence
ations of this prior from the underlying true wave spectrum. the choice of the quantity to be minimized, the convergence
The general form of the cost function (6) is applicable tpath taken, and the validity of the final wave estimates and
nearly all wave-SAR studies. Additional terms may be includeassociated errors. Consider now the specification of the quantity
in J to control properties of integral features such as the signild, the linearization of the wave-SAR map about the current
cant wave height or mean propagation direction [12]. This correrave state. Reference [8] offers an analytic gradient expression
sponds to adding further prior information and can be absorb&d/dw for a simplified version of (6) in which an exact
into this general framework. It is notable that the weightinlinearization of the wave-SAR map is implicit. However, a
functions (the inverse error covariances?, E;l) used inthe common strategy, motivated by the complexity of the nonlinear
cost function often vary a great deal between studies (contrasinsform and its differentiation, is to approximatke/dw by
[15], [8], and [12]). The consequence of these differences in tha iteration invarianH derived from the quasilinear transform
quantity to be minimized is an improper accounting for the re{e.g. [15], [12]). SinceJ in (6) remains defined in terms of the
ative role of SAR-derived and prior wave information for diffull nonlinear transformh{w}, the consequence of using an
ferent regions of the wavenumber domain. This leads to prapproximateH rests only in the convergence properties of the
tical difficulties in comparing methods and their results. Walgorithm. This is briefly illustrated below.
demonstrate below that the final estimates of the state and itSo examine the convergence of the minimization procedure,
error variance, as well as the convergence of the minimizatisappose that we have an estimatg and seek an update of
procedure, are strongly influenced by choic&hfandX,,. the form (7) based on the increment (10)wif, is sufficiently
In nonlinear wave-SAR inversion, minimization of the costlose to its true valuev,, we may carry out a Taylor expansion
function is generally carried out iteratively based on an incref h{w,, } aboutw,. This leads to the following convergence
mental updating of a first guess wave spectrum (e.g., [10]). Diermula, valid in the vicinity of the true minimum
notew,, as the estimate of the wave spectrum at iteratiaf
the minimization procedure. The updated wave spectrum takes (W1 — wi] = Afwy, —wi]
the form

(12)
where

Wpt1 = Wy + OW 7 5h
A=1-3,(HT'Z! S + 3t
whereéw denotes the incremental change to the current esti- Wlw=w,

mate of the wave spectrum. Substituting this in the cost funcn%th T denoting the identity matrix. If the eigenvaluesAf A
(6) yields, for thenth iteration

are less than one in absolute value, then convergence will be
Jn = ||ls—h{w, +5W}||22*‘ +[[wp — (Wr +5W)||2271, (8) achieved as — oc. Note that ifH = 0h/0w|w=w,, CONver-
° ’ gence is achieved immediately. Otherwise, it is the “closeness”
Taking the leading order term of a Taylor expansioh§fv,, + of an approximatd to dh/0w|.—, (in terms of the eigen-
éw} aboutw,, allows (8) to be written values of AT A) that will dictate the convergence properties.
Numerous wave-SAR studies suggest (but do not prove) that
Jp, = ||6s — Héw) - . T
the quasilinear transform provides a reasonable approximation
where the increments are definedéas= s — h(w,,), w, = to an exact_lineariz_ation, and that convergence can be achieved
w, — W,,, andéw = w — w,,. The wave-SAR transform lin- under a variety of circumstances (e.g.,.[15], [12])._However, the
earized about the current stateHs = (9h/0w)w—w, . Each €Xact gradient of [8] does h_avg attractive theoretical properties
iteration then requires the minimization of a quadratic cost fun@Dd deserves further examination.
tion, and the full solution is a sequence of linear estimation
problems. Statistically, the above represents an extension of 919
Gauss—Newton method of nonlinear regression (e.g., [23]) totheCase 1: SAR Only:Consider the situation where wave es-
randomg case (Appendix B). timation must rely on SAR alone. Observability is the main
Within each iteration of the multistep minimization of the cogssue in the sense that there are wavenumber regions where
function (6), a linear regression problem must be solved. THEAR provides no wave information. These null spaces are evi-
yields the incremental change in the wave spectrum at iteratident in Fig. 6. For a linearized wave-SAR map, the regression
n, l.e. s = Hw + e, with solutionw = (H'S;'H)"'H'Z !s
- cannot be achieved directly. Singular value decomposition of-
Sw =3, (H 'S s + 316w, (10)  fers one solution for such rank-deficient regression problems
(e.g. [2]). However, it relies on an implied prior based on a min-
imum norm for the solution vectat. This effectively sets wave
2, = (3 +H' S tH) (11) estimates in spectral null spaces to zero. The implication for the
nonlinear inversion is that portions of a first guess wave, which
Here, X, provides an asymptotic estimate for the error covamprojectinto the null space will not be changed in subsequent iter-
ance of the predicted wave spectrum (Appendix B). ations (the algorithm may converge, but the inverse problem ef-

120+ lw, = bwl . ()

Limiting Cases

with
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fectively remains ill-posed). The first guess wave acts as a prior TABLE I

estimate for that portion of the wave spectrum not observal5fgARACTERIZATION OF THE RADARSAT SAR SECTRA AND THEWAVE-SAR
TRANSFORM HERE, pAA(U) IS THE CALCULATED ZERO LAG OF THE

by the SAR. VELOCITY BUNCHING COVARIANCE FUNCTION (SEEAPPENDIXA). ESTIMATED
Case 2: Blending of SAR and Prior Wave InformaAziMuTH FALLOFF, RANGE FALLOFF, AND NOISE LEVEL PARAMETERS OF THE

tion: Consider the linearized wave-SAR transform as abova/R G-SPECTRA AREDENOTED BY ¢, ¢, AND ¢y, RESPECTIVELY. K IS A
ITTED EQUIVALENT RECTANGULAR WIDTH CUTOFF WAVENUMBER IN m

If H is a diagonal matrix, SAR-derived wave estimates for the (seeTexr). THE FINAL COLUMN IS THE CORRELATION BETWEEN THE

ith wavenumber bin are determinedas,, = Hi_ilsi (where OBSERVED AND SIMULATED SAR COINCIDENT SPECTRA
H;;! exists). Furthermore, assume thatis theith element of >
wj, and thats, ~ WS(0, o2I) andX, ~ W5(0, o2I). For case | paal0) | ca | o | o K. | corr
- , . 1 | 4825 |4954 | 132.1 | 3.665 | 2.43(1072) | 0.95
each admissible wavenumber Birthe wave estimaté takes i
the form 2 | 1571 | 2085 | 176.9 | 1.687 | 2.93(1072) | 0.89
3 | 2001 | 3269 | 41.62 | 1.223 | 3.01(1072) | 0.79
. 1 1 4 | 4618 |603.2 | 45.18 | 0.738 | 2.45(1072) | 0.54
w=\|-—) Wsar + 1 | Wp- 9
1+~ 1+~ 5 | 448.5 | 940.7 | 1445.7 | 1.477 | 4.76(1072) | 0.68
6 | 6541.2 | 51.90 | 200.7 | 1.428 | 2.19(1072%) | 0.83

wherey = Hj;?s2/02. The final wave estimate is simply a
weighted sum of the SAR-derived and the prior wave estimates. .
The weighting is governed by, which may be interpreted asHere,I'yoa (k) = exp{—(¢.k? + cok2)} with ¢, andc, rep-

the ratio of 1) the error variance of SAR observations scaled kgsenting the falloff in power in the azimuth and range direc-
the inverse transform, to 2) the error variance of the prior watiens. This falloff is due to point target spreading and, in the
estimate. Ify > 1, such as might be expected in wavenumb@ase ofc,, wind effects on the azimuth cutoft,, represents a
regions corresponding to null spaces of the transform, the esfpeckle-based noise floor and is strictly valid only for indepen-

mate reverts tav,. If v < 1, the estimate becomes,,,. dent and identically distributed (i.i.d.) speckle [9]. The real part
of the wave-SAR map{S,;(k)} is based on (3) using’ (k)
IV. APPLICATION from the observed buoy wave spectra. The radar modulation

5

. . . . ransfer functions irby; (k) follow [17] with the parameters of
In this section, we examine some practical aspects of t €ble I. The unknown parameters, ¢,,, ande, were estimated
wave-SAR Inverse .proble_m using the observed SAR 'mag ing a simplex method for nonlinear minimization [21]. Re-
cross-spectra. This is carried out in the context of the StatIStI% its are given in Table II. Note that while the predicted azimuth

estima_ti_o n proce'd.ure of the previous section and _malfes US& Mot factorp.4.4(0) (derived from the basic wave-SAR trans-
a modified quasilinear wave-SAR transform, which includ rm) is quite variable, allowing for inclusion of a case-specific

case-specific non-wave geophysical and imaging effects. N%tehas rendered the cutoff wavenumbiér more stable and re-

that use of the nonlinear transform did not appear justified %Fﬁstic
the basis of its ability to explain additional variability found in Sirﬁulated SAR coincident spectra were calculated using the
the observed SAR spectra. modified wave-SAR transform and the estimated values, pf

The observed RADARSAT SAR image cross-spectra contacln, andc,. from Table Il (see Fig. 7). The simulated SAR spectra

features not accounted for by the basic wave-SAR transfor : .
of Appendix A. These include broadband noise due to resid Jgjmpare reasonably well with the observed spectra of Fig. 2

. . (Correlations are given in Table Il). Cases 1-3 show good cor-
speckle, speciral falloff at higher wavenumbers due ta fini %Spondence in terms of both the overall magnitudes, peak lo-

sensor resolution, and geophysical (e.g., wind) modificatioegtions and level of the broadband noise. In cases 4 and 5, the
to the azimuth cutoff. While some progress has been made | ' '

derstanding th ) tice. thev tend to b oBserved and modeled SAR spectra compare less well. This re-
understanding the€se processes, In practice, n€y tend 1o De Gfy 75y, peaks in the observed wave and SAR spectra being
dressed either through standard preprocessing procedures

o _ set across the zero range and zero azimuth wavenumber axes,
or through fitting exercises based on observed SAR auto-speg %ectively (compare Figs. 1 and 2). Case 6 shows a situa-

(e.g., [26], [15]). As an alternative procedure, we consider S ion where the modified transform predicts range splitting where
image cross-spectra and a parameter estimation procedure l%?]t

tak t of pri it tion i der t dify th e is found.
akes account of prior wave information in order to modify the The observation error structure was next determined based on

basic wave-SAR transform. Below, we consider the Coincideg}]alySis ofthe residua&$l§) — S, (E)—S d(E) between the

specira in detail and use the quadrature specira only for its phgﬁgerved and predicted SAR coincident spectra. The postulated

information. .
. e rror variance structure follows (13) and takes the form
In order to modify the wave-SAR map for case-specific eE (13)

fects, we seek to minimize a discrete version of the cost function var{e(E)} = T () (O_n n omd)(E)) '

J, = / Soss (F) = Suoa (F) ‘2 dk (14)

whereS, ;. and S,,.q denote the observed and modeled SARhe Gaussian functioﬁe,,,,(lz) captures the falloff in the mag-
coincident spectra, respectively. We assume the following formitude of the error with the increasing wavenumber is a
for Siea wavenumber independent noise term, and the model error term
o o R consists of scaling factar,,, multiplied by the structure func-
Smod (k) = Pimod (k) X (Cn + §R{Sql(/f)}) - (13) tion ¢(k). For simplicity, p(k) is taken to be the quasilinear

=
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Fig. 7. Real part of the modeled SAR cross-spectrum obtained based on the modified quasilinear wave-SAR map and the buoy wave spectra. The axes follow
Fig. 1, and the grayscale represents the spectral density of the radar cross section. Dotted areas follow Fig. 2.

wave-SAR map with an input white wave spectrum (see Fig. flied to the raw SAR spectra. Fig. 8 shows the error variance for
and modified to use the cutoff wavenumb€r from Table Il. case 1. The aforementioned error analysis allows us to specify
Residual analysis suggests a case-independent estimatg,for 33,.

(with energy falloff factorsc, = 100 andc, = 200) and for  As a preprocessing step in wave-SAR inversion, we separate
the noise leveld, = 1). The case-dependesny, had the fol- the wave signal from non-wave processes to avoid any broad-
lowing values: 1.5, 2.1, 2.3, 10.5, 1.9, and 9.8 for cases 1-6, bend noise present in the observed SAR being attributed to
spectively. The high values in cases 4 and 6 resulted from migzean wave energy. First, regions of the coincident spectra were
matches in the spectral distribution of energy in the observetkntified corresponding to coherency greater than 0.6 (see
SAR and buoy wave spectra. Error correlations are assuntettion Il). Second, the corresponding mean phase values in
isotropic in wavenumber and based on the smoothing kernel @&ach of these coherent regions are used to identify the portion
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and phase-filtered SAR spectriuand the modified wave-SAR
transformH of (13), using the values of Table Il but with

¢, = 0 (we have removed the noise floor). Wave estimates
are then determined a8 = (HYX;'H)"'H?X;!s. Null
spaces where the SAR has no information content are explicitly
identified as part of this inversion procedure. It is clear that
comparison of the SAR-derived wave estimates with the buoy
spectra would normally take place in a very limited region of
the wavenumber plane. Moreover, the information content of
these non-null regions must take into account the error variance
of the SAR-derived wave. Panel (b) of Fig. 8 shows this error
variance for case 1. Note that in spectral regions adjacent to
null spaces, the error variance tends to be large, reflecting the
sensitivity of wave estimates to the azimuth cutoff. The overall
energy content of the SAR-derived and buoy wave spectra in
non-null regions show a reasonable match in all cases with the
exception of cases 4 and 6.

Estimation of the complete directional wave spectrum must
combine wave information from the (band limited) SAR with
the (broad band) buoy wave spectra, taking into account the
wavenumber dependence of their respective error covariances.
Initial experiments with direct blending of the SAR and buoy
information using (10) lead to discontinuties near the azimuth
cutoff (imagine combining the wave spectra in Figs. 1 and 9,
also see Section I1I-C). However, the error variance of the wave
estimates [panel (c) of Fig. 8] reveals the main properties asso-
ciated with the blending of SAR and prior wave estimates: null
spaces are eliminated and the overall error variance is reduced.

Asan alternative to direct blending, we also considered param-
eterization of the true wave spectrum in terms of the buoy spec-
trum, but allow for its free rotation through an angldn terms
of the cost function (6), or (9), we let = rot{#; w,} and we
minimize.J with respect t@. The two terms in the cost function
are then interpreted as measuring the weighted squared differ-
ences between: 1) the observed SAR spectrum and that predicted
using the rotated buoy wave spectrum, and 2) the buoy wave spec-
trum and its rotated version. The second term acts as aregulariza-
tion term that biases the final estimator toward a state of minimal
rotation. For simplicity, we assum¥s, = o—gI. Fig. 10 shows
the cost function/ versus the rotation angtefor the six cases.
Three treatments are applied: baselhn;Q( =0), weak regular-
ization ;,* = 1577), and strong regularization [ * = 102).

The results indicate multiple minima ih for the baseline situ-
ation. Strong regularization generally biases results heavily to-
ward 6 = 0. Weak regularization allows for an unambiguous
][:iﬁl- 8. Typical r?ot mean squared (_ZIQMIS)berror Varir(’:\nC?S (flfomdcasg 1)b for thpoice of the optima required to bring the wave spectra of Fig. 1
ol shecta uanies: () esihal between the st and obs21ffo agreement with the SAR-based wave information. Gener-
information only, (c) wave estimate using SAR and a prior wave spectruglized cross-validation would provide a more formal means to

with 2 = 5°. The axes follow Fig. 1. Dotted areas identify null spaces of thehgose the strength of the regularization term [4].
inversion.

(&1

of the SAR spectrum corresponding to the wave propagation V. SUMMARY AND CONCLUSIONS

direction (see Fig. 5). Finally, a noise floor is subtracted from In this paper, we have examined the problem of extracting
these spectral regions, whose magnitude is based on the resnftgmation on the directional ocean wave spectrum from SAR
given in Table II. This procedure identifies the portion of théimagery. A unique aspect of this study is its emphasis on sta-
observed-SAR spectrum with useful wave information. tistical aspects of the inverse problem, as well as the use of
Fig. 9 shows SAR-derived wave estimates based on inversiBAR image cross-spectra. Our framework for wave-SAR inver-
of the wave-SAR transform. These are based on the coheresmn allows the wave information content of SAR to be quanti-
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Fig. 9. Wave estimates derived from RADARSAT SAR spectra. The axes follow Fig. 1. The grayscale denotes the spectral density of the radar cross section
Dotted areas identify null spaces of the inversion.

fied on a wavenumber-dependent basis. The RADARSAT SAg®ynificantly about the value expected based on a deep water
data used here were processed into two looks at the same oaigpersion relation.

scene separated by 0.4 s. Speckle noise was greatly reduced the extraction of wave information from observed SAR
comparison with the SAR auto-spectra, though some broadbapéctra was examined from the perspective of a statistical
noise persisted. The coincident spectrum clearly showed #&imation problem, specifically, a randgi-extension of
wave modulation of the radar cross section in limited, butidentionlinear regression (Appendix B). This general formulation
fiable, regions of wavenumber space. The quadrature spectruighlights key issues and allows an assessment of the conse-
had much greater variability, but the associated phase spectmumences of the differing assumptions made in past wave-SAR
was able to resolve propagation direction for most cases. Hawversion work. It was shown that the wave-SAR inverse
ever, the mean phase values in each of the wave groups vapeablem requires estimates for the error covariances associated
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Fig. 10. Cost functiory as a function of the rotation anghe(see text). The rotation angle is measured positive clockwise in degrees. Lines designate the three
different treatments: baseline case with® = 0 (solid), weak regularization with > = 15> (dashed), and strong regularization witfi> = 10~ (dash-dot).
0.min refers to the optimal rotation angle for the minimuhin the case of weak regularization.

with 1) the observed SAR (including errors in the wave-SARIgorithm. These are important issues to consider for the use of
transform), and 2) the prior wave estimates. Specificati®AR in a wave data assimilation system.

of these quantities varies widely between studies (contrastA simple wave-SAR inversion procedure was carried out
[12], [15], [8]). Another common simplification of wave-SARfor the purpose of examining practical issues pertinent to
studies uses the quasilinear wave-SAR map as an intermediagve extraction from SAR. Toward this end, we elected to
in the inversion of the fully nonlinear transform (e.g., [10]focus on the real part of the SAR image cross-spectra and
[12]). We showed how this approximation to an exact lindse the quadrature spectra only for its phase information. A
earization of the wave-SAR map about the current wave statodified wave-SAR transform was used, which empirically
is linked to the convergence properties of the minimizatiomccounted for broadband residual speckle [9], spectral falloff
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with increasing wavenumber [17], [15], and sea surface effedtstunately, generic spectral shapes for swell do not exist, unlike
on the azimuth cutoff [26]. These parameters were estimatied a wind sea [19]. Parameterization of the wave-spectral shape
using a fitting procedure designed to minimize the squar@dterms of that predicted by a wave model has been suggested
difference between the observed and modeled SAR coincid§t®]. Our simple experiments with such a parameterization, al-
spectra. A canonical form for the observation error covariantmving for free rotation of the spectral shape, indicated the com-
was determined based on an analysis of the residuals betwpkaxity of such an optimization: multiple minima were found in
the observed and predicted SAR coincident spectra. Wabhe cost function and additional regularization was required.
extraction from the SAR spectra was achieved by filtering for In conclusion, satellite-based SAR inter-look image cross-
broadband noise and wave propagation direction using the spectra offers useful, though limited, information on the direc-
herency and phase spectra. Inversion of the modified wave-SA&hal ocean wave spectrum. A basic understanding of the in-
transform emphasized the highly band-limited nature of theerse problem associated with wave extraction from SAR is cen-
SAR wave information and provided for explicit treatment offral to the continued use of SAR for understanding ocean waves.
the null spaces and estimates of the wavenumber-dependdfthave examined a regression-based framework to investigate
error variance. the problem and emphasize the importance of taking proper ac-
There are a number of outstanding issues involved in SARunt of uncertainties in the observed SAR spectrum and the
processing for optimal extraction of ocean wave informatiomave-SAR transform. Continued investigation of SAR imagery
(e.g., [27]). At the heart of the cross-spectral method is the m@l-located within situ wave information is needed (e.g., [20]).
tilook processing of the SAR data, which produces independéiitese studies should focus on rectifying uncertainties in the
looks at the same ocean scene. Ideally, these looks shoulduMeee-SAR transform, as well as providing for a robust statistical
temporally separated by a significant fraction of the period elescription of non-wave, geophysical effects (such as wind) on
the dominant wave groups. However, time separations are ctite SAR spectrum, including parameterization of errors. Such
strained by the Doppler bandwidth of the SAR to be a fraction sfudies would clearly advance the practical use and theoretical
a second. The relation of the noise processes to the Dopplertihderstanding of SAR imaging of ocean waves.
tering and multilook processing remains unclear. We also illus-
trated how the coincident and quadrature spectra provide com- APPENDIX A
plementary information on the wave spectra due to the (deep WAVE-SAR TRANSFORM
water) dispersion relation embedded in the wave-SAR trans-r

f H h tent to which look i d he closed form, nonlinear integral transform relating the
orm. However, the extent to which 100k separation and Crosgeq 5 \yave spectrum to the SAR image autospectrum is due to
spectral SAR processing may be optimized for the extraction

) ) ﬂ ], and has been extended to the case of SAR image cross-
waves remains an open question.

i > ) ; ) . spectra [8]. Following [8], the wave-SAR transform may be
A key issue in extracting wave information from SAR is the ,\ymarized as

appropriate use of the highly band limited wave information.
Null spaces must be explicitly identified and quantitative 5(/;’) - / C*i’:'fG(f’ /;’)df (15)
estimates of the wavenumber dependent error covariance are

necessary. We have argued that the observation error covariqnﬁgre S( E)

matrixEo_ plays an importan'; role _in wave-SAR inversion. Thig, 1y ooks at the same ocean scene separated by the time
quantity includes shortcomings in the wave-SAR transforqhterva| 7 (the functional dependence onis implicit). The

noise, and non-wave signals, as well as errors of representat(y(gémr wavenumbet — (ks k,) is in satellite coordinates

ness due to sampling variability [16]. Our prototype expressiopy qenotes the cross-track (range) and along-track (azimuth)

for the 33, reflected two main features: 1) compensation for thg, enumbers, respectively. The corresponding coordinates in

nonuniform response of the SAR to changes in wave energy, spatial (image) domain are given By= (z, y). A basic

for different spectral regions (see [15]), and 2) uncertainties cion of the (wave spectrum dependegiunction in the in-
associated with noise and pre-processing. Our treatment and takes the form

taken account of the full wavenumber plane and emphasizes
that the SAR provides as much information about both where G(z, /}’) = exp {kz (pAA(f) — pAA(ﬁ))}
) —

represents the SAR image cross-spectrum based

the wave energy is located in wavenumber space, as well as . K .
regions in which there is no wave energy. This treatment would X AL+ pri(&) +iky (pra(@) — par(@))
be greatly enhanced by a more extensive data set on which to + ky(pra(®) — par(@)} (16)
base the error analysis. where

The assimilation of SAR in operational wave models is under
active development [6]. Like many satellite data sources, SAR ftab () = pap(T) — pab(ﬁ)
is nonlinearly related to the prognostic variables of interest (i.e.
a nonlinear measurement operator). We have outlined the esfith a, 4 denoting one of or A. The covariance functions,,
mation problem associated with the use of SAR in a wave datethe above take the form
assimilation context. Blending of the band limited SAR derived 1 o
waves with model estimates requires additional assumptions in pab(Z) = (2r)? / G
orderto obtain physically realizable wavenumber spectra(e.g., to . . .
account for spectral discontinuties near the azimuth cutoff). Un- X (N,,,b(k)W( )+ N:b(_k)W(_k)) dk
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=

wherex denotes complex conjugatior] (k) is the ocean wave APPENDIX B
spectrum, and RANDOM-3 REGRESSION
N, (E) _ %Ta (E) 7 (E) T Consider the system of regression equations
s = Hw +e,, W, =wW-+e,

Here, thel, , are the radar modulation transfer functions that ) o )
summarize the ensemble properties of the interaction of tH&€re the regression coefficientsare treated as a random vari-

radar waves with the sea surface withb subscripting denoting 2Ple (hence, the designation “randgit): These can be com-
either the real aperture radar (RAR) tilt and hydrodynamic molined a single regression equation as

ulation77, or the velocity bunching modulaticdti; . Reference S H e,

[17] gives a very basic form for these relations < ) - < )W + < )

Wy I ep
R i Assume that the errors are uncorrelated, i.e.,
17 = ciky, Ty = v T sin o + 4 cos a (17) &\ (=, 0
M var =
ep 0 X,
where whereX, andX, represent the associated error covariance ma-
c constant; trices. The above equation is now in standard regression form,
R denotes range (distance from the antenna to the targéfjd the generalized least squares solutionfas obtained im-
VvV  platform velocity; mediately as
a  incidence angle. -1 g s
. .. . . N ) HTI o
More detailed and realistic RAR modulation transfer functions w =3, [( ) 0 n-1 w
P p

are available and frequently used, e.g., [20]. _ T 1 1
The wave-SAR transform (1) is generally evaluated based =2, H 2, T + 202, Wy (20)

on series expansion of the exponential tesm{kZp.1.4(Z)} in  whereX,, is the error covariance matrix & and is given by
(16), i.e.

() = o {0} 3 4 == [ (%5 ) ()]

=H'Z'H+z (21)
x (k2" F{p A(@)(1 + p11(Z)) An alternative expression may be derived as follows. Substi-
+ ki"‘i'lF{pZA(f)(pIA(") — par(@)} tuting (21) into (20) and solving fo# yields
+ B2 {7 o (B) (pra(@) par(@)} (18) W =w, + Z,H' 2] (s — Hw))

where I’ denotes the Fourier transform operator. The integral =wp +K(s — Hwy)

in (15) is thus cast as a sequence of readily evaluated Fourigtere we have defined the gain mathx= X, HY 3. This

transforms. makes clear how the observations may be viewed in terms of
The analytic properties of the nonlinear wave-SAR transforopdating the prior estimate and is directly linked to a single-

for the case of SAR auto-spectra £ 0) have been examinedstage transition of the Kalman filter [5].

by [14]. In the cross-spectral cage ¥ 0), a phase shi#™“™ is

introduced into theV,,;, function. This represents a simple wave ACKNOWLEDGMENT
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