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Ocean Wave Extraction from RADARSAT Synthetic
Aperture Radar Inter-Look Image Cross-Spectra

Michael Dowd, Paris W. Vachon, Senior Member, IEEE, Fred W. Dobson, and Richard B. Olsen

Abstract—This study is concerned with the extraction of direc-
tional ocean wave spectra from synthetic aperture radar (SAR)
image spectra. The statistical estimation problem underlying
the wave-SAR inverse problem is examined in detail in order to
properly quantify the wave information content of SAR. As a
concrete focus, a data set is considered comprising six RADARSAT
SAR images co-located with a directional wave buoy off the east
coast of Canada. These SAR data are transformed into inter-look
image cross-spectra based on two looks at the same ocean scene
separated by 0.4 s. The general problem of wave extraction from
SAR is cast in terms of a statistical estimation problem that
includes the observed SAR spectra, the wave-SAR transform, and
prior spectral wave information. The central role of the weighting
functions (inverse of the error covariances) is demonstrated, as
well as the consequence of approximate (based on the quasilinear
wave-SAR transform) versus exact linearizations on the conver-
gence properties of the algorithm. Error estimates are derived and
discussed. This statistical framework is applied to the extraction of
spectral wave information from observed RADARSAT SAR image
cross-spectra. A modified wave-SAR transform is used to account
for case-specific geophysical and imaging effects. Analysis of the
residual error of simulated and observed SAR spectra motivates
a canonical form for the SAR observation error covariance. Wave
estimates are then extracted from the SAR spectra, including
wavenumber dependent error estimates and explicit identification
of spectral null spaces where the SAR contains no wave informa-
tion. Band-limited SAR wave information is also combined with
prior (buoy) spectral wave estimates through parameterization of
the wave spectral shape and use of regularization.

Index Terms—Estimation, inverse problems, satellite appli-
cations, sea surface, spectral domain analysis, surface waves,
synthetic aperture radar (SAR).

I. INTRODUCTION

T HE potential for extracting ocean surface gravity wave in-
formation from synthetic aperture radar (SAR) images of

the ocean surface is widely recognized. Satellite SAR missions,
both current (e.g., ERS-2 and RADARSAT) and planned (e.g.,
ENVISAT, RADARSAT-2), have imaging modes, which pro-
vide information on directional ocean wave spectra. Satellite-
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borne SAR has the potential to add significantly to the existing
in situ global wave observing system, presently comprised of a
sparse and irregularly distributed array of wave buoys. SAR-de-
rived wave spectra are expected to be useful for validation of,
and assimilation into, operational wave models [6]. While it is
evident that SAR holds much promise for observing the ocean
wave spectrum, its full potential has yet to be realized.

The basic physical mechanisms governing SAR imaging of
ocean waves are reasonably well understood [11]. A signifi-
cant step forward was realized with the derivation of a closed
form, nonlinear transform relating the ocean wave spectrum to
the SAR image spectrum ([10], see also [14]). This wave-SAR
transform has since been extended to cover the more general
case of the SAR image cross-spectrum [8], [13]. However, a
number of issues arise when using satellite SAR in a wave ob-
serving system. One fundamental difficulty is its inability to
record wave induced modulations of the radar cross-section at
high along-track (azimuth) wavenumbers. Satellite-based SAR
typically truncates signals associated with waves having less
than 100 m wavelengths in azimuth (e.g., [1]). Non-wave geo-
physical signals such as wind further modify this azimuth cutoff
[26], [7]. This latter feature, together with speckle noise (e.g.,
[9]) limits the ability of the basic wave-SAR transform to ac-
count for the full variability found in observed SAR spectra.
This has lead to wave-SAR transforms with case-specific mod-
ifications that absorb geophysical effects into the underlying
physical parameterizations of the ensemble scattering proper-
ties of the ocean surface [15], [20].

Wave estimates from observed SAR spectra rely on inversion
of the wave-SAR transform. These SAR-derived wave estimates
have received much attention in the context of operational wave
modeling and data assimilation [6], [12]. A key feature of SAR
is its concentration of wave information in specific wavenumber
bands that are dependent on orbit characteristics, viewing ge-
ometry, and prevailing sea surface conditions. Data assimila-
tion methods require the ability to systematically compare wave
spectral estimates from a model with those derived from SAR
on a wavenumber-dependent basis. At a fundamental level, we
must then consider the statistical problem of combining the in-
formation contained in 1) the observed SAR spectrum; 2) the
wave-SAR transform; and 3) any prior estimates of the wave
field such as those produced by a model. The goal is a posterior
estimate of the directional ocean wave spectrum that maximizes
the information content and has quantitative estimates of uncer-
tainty.

The purpose of this work is to extract spectral wave infor-
mation from SAR. Toward this end, we develop a statistical
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estimation framework for wave-SAR inversion that allows
for the wave information content of SAR to be quantified
on a wavenumber-dependent basis. As a particular focus,
we examine a set of RADARSAT SAR inter-look image
cross-spectra co-located with a wave buoy off the east coast of
Canada. These cross-spectra are based on two images of the
same ocean scene separated by a fraction of a second and offer
advantages over SAR auto-spectra in terms of speckle noise
reduction and the ability to resolve wave propagation direction
[8]. We compute and analyze the SAR spectra in terms of
their statistical properties and wave information content. A
general statistical framework is developed for quantitatively
examining the wave-SAR inverse problem. This approach
encompasses other wave-SAR inversion studies (e.g., [8], [10],
[15], [12]). Importantly, it provides for a means to compare and
assess the consequences of the various (and often conflicting)
assumptions made in these studies, consequences frequently
obscured by the analytic complexity of the wave-SAR trans-
form. Practical aspects of carrying out the statistically-based
inverse problem are undertaken based on the observed SAR
image cross-spectra, the buoy wave spectra, and a wave-SAR
transform modified to account for case-specific geophysical
effects.

This paper is organized as follows. Section II presents SAR
image cross-spectra from RADARSAT, along with co-located
wave buoy spectra. In Section III, the wave-SAR transform is
briefly reviewed, and its inversion is examined in detail. Sec-
tion IV provides an application of the inversion procedure. Sec-
tion V contains a summary and conclusion. Appendix A pro-
vides details of the wave-SAR transform, and Appendix B in-
troduces the (random-) regression methodology central to our
development of wave-SAR inversion.

II. OBSERVATIONS

In this section, we examine some RADARSAT SAR image
spectra and co-locatedin situ buoy data collected during the
1996 March/April Ship Detection Experiment (MASDE)
[24]. Wind and wave data were collected from two buoys (a
MINIMET meteorological buoy and Datawell directional wave
rider buoy) moored near 44.5N, 63 W. Directional wave
spectra were processed using a maximum likelihood (ML)
method [18]. There were a total of nine available SAR and
buoy co-locations, but three of the SAR images contained little
discernible wave information. This appeared to be due to low
total wave energy combined with a strong azimuth component
to the wave propagation direction. We ignore these cases
hereafter. Details of the remaining six cases are summarized in
Table I.

The RADARSAT SAR data were processed into inter-look
image cross-spectra according to the following procedure:

1) separation into five individual looks separated by 293 Hz;
2) for each of the pairs (1, 3), (2, 4), and (3, 5):

a) extract 1024 1024 image region and detrend;
b) calculate modified periodgrams for 512512 sub-

regions using a Kaiser window;
c) average the modified periodograms;

TABLE I
SUMMARY OF THE RADARSAT SAR PARAMETERS AND ENVIRONMENTAL

CONDITIONS DURING MASDE. SATELLITE PARAMETERSINCLUDE THE BEAM

MODE, INCIDENCE ANGLE �, AND THE RANGE-TO-VELOCITY RATIO (R=V ).
ENVIRONMENTAL PARAMETERS INCLUDE THE SIGNIFICANT WAVE HEIGHT

H , THE PEAK PERIOD T , THE PEAK WAVENUMBER k , THE WIND

SPEED AT 10 mU , AND THE WIND DIRECTION U IN SATELLITE

COORDINATES WITH 0 DENOTING THE AZIMUTH DIRECTION. UNITS

ARE MKS AND ANGLES ARE IN DEGREES

3) Calculate raw cross-spectra by averaging the results for
each of the look pairs and smooth through convolution
with a Gaussian smoothing kernel.

The end result of this procedure is a set of SAR image cross-
spectra based on a time separation of0.4 s (see [28]).

Comparison of the co-located wave and SAR spectra allows
us to examine the wave modulation of the spectral properties
of the normalized radar cross-section of the ocean surface. The
directional ocean wave spectrum for the six cases are shown
in Fig. 1. These spectra are smooth as a result of the spec-
tral processing of the buoy heave, pitch, and roll data. The low
wavenumber swell is recorded in all cases and case 1 shows a lo-
cally generated wind sea propagating in a near-range direction.
In our treatment of the SAR data, we emphasize its fundamental
nature and make no attempt, at this stage, to correct for multi-
plicative speckle noise or for the falloff of spectral density with
increasing wavenumber [9], [17]. To suppress large-scale, non-
wave geophysical signals such as marine boundary layer wind
patterns [25], we have chosen not consider wavenumber regions
corresponding to wavelengths 300 m (note that ocean sur-
face gravity wave energy may be present at greater wavelengths,
however, our RADARSAT SAR spectra showed nonwave sig-
nals at these higher wavelengths). Finally, note that buoy and
image spectra differ in that the former is derived from a time-av-
eraged point measurement, while the latter represents an instan-
taneous spatial snapshot.

The real part of the SAR cross-spectra (the coincident
spectra) are shown in Fig. 2. There is evidence of SAR
imaging of the dominant 100–150 m swell, although azimuth
wavenumbers 0.05 m (i.e., 125 m wavelengths) are
truncated. Note that case 5 images a near-azimuth travelling
wave, and in case 1 the locally generated wind sea is apparent.
Peak energy of the SAR and buoy spectra are not always
co-located (even after taking account of the gain characteristics
of the SAR). While a dramatic reduction in speckle noise over
the auto-spectra (not shown) is evident, some broad band noise
still persists. In theory, speckle noise should be eliminated if it
is statistically independent between looks [8].

To further examine the effect of the multilook processing
on the spectral energy and broad band noise, we reprocessed
case 5 into five looks, each separated by 0.15 s. Case 5
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Fig. 1. Directional wave spectra collected during MASDE from a wave buoy located at 44.5N, 63 W. These are in satellite coordinates with the axes
corresponding to the range “kr” (cross-track) and azimuth “ka” (along-track) wavenumbers in radians m. The grayscale denotes the spectral density of wave
height in m.

records a near azimuth travelling wave allowing for assessment
of the low wavenumber nonwave signals in the range integrated
spectrum. Fig. 3 shows the range-integrated coincident spectra
for different time separations. Reduction of the total energy
is evident when comparing the auto-spectra ( 0) with
the cross-spectra ( 0). With increasing time separation
the total energy declines to a stable level after 0.3 s.
This stabilization indicates that looks no longer overlap (in the
frequency domain) and suggests a minimal value forto ensure

statistical independence between looks. The remaining noise
processes may be residual speckle, or may have a geophysical
origin.

Information on the wave propagation direction resides in
the anti-symmetry of the imaginary part of the SAR image
cross-spectra (the quadrature spectra) shown in Fig. 4. The
overall magnitude of the quadrature spectra are generally
less than the coincident spectra and are more variable. For
cases 2, 4, and 6, the anti-symmetry is readily evident in
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Fig. 2. Real part of the RADARSAT SAR image cross-spectra derived from two looks at the same ocean scene, separated by 0.4 s in time. The axes follow Fig. 1.
The grayscale corresponds to spectral density of the normalized radar cross-section. Note that the regionj~kj < 2�/300 m is marked with dots to emphasize the
lack of reliable ocean wave information here.

the spectral regions containing wave information, but for the
remaining cases, it is not so clear. Coherency spectra were
also calculated after correcting the auto-spectra for speckle
and spectral falloff with increasing wavenumber [17]. These
coherency spectra are used to separate the (coherent) wave
signal from (incoherent) noise processes. Fig. 5 shows the
phase spectra for regions with coherency greater than 0.6 (this
threshold coherency represents a type I error probability of
0.01 in a test for zero coherency [22]). In cases 1, 2, 4, and

6, the negative phase regions match the wave propagation
direction. The direction of wave propagation in cases 3 and
5 are less clear. For the various cases, values for the mean
phase in these wavenumber regions are quite different (for a
100 m deep water wave, we expect a phase of0.3 radians
over the 0.4 s time separation between looks). This may be
explained by sampling variability coupled with the weak phase
signature implied by the short time separation of the two-look
SAR imagery (see Section III-A).
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Fig. 3. Range-integrated SAR coincident spectra from case 5. The image was reprocessed into five looks, each with an time separation� � 0.15 s. The various
curves denote the spectra for the different time separations as indicated. All spectra are normalized by the maximum value of the auto-spectra. Following Fig. 2,
the regionjk j < 2�/300 m is left blank.

III. T HEORY

A. Forward Map

The theoretical basis for examining the relation between the
ocean wave spectrum and the SAR image spectrum is given
by the closed form, integral transform first proposed by [10].
This has since been extended to the more general case of the
SAR image cross-spectrum [8]. The wave-SAR transform may
be represented as

(1)

Here, is the directional ocean wave spectrum. The vector
wavenumber is in satellite coordinates, with
and denoting the cross-track (range) and along-track (az-
imuth) wavenumbers, respectively. Therepresent parameters
of the wave-SAR map, some of which may be readily speci-
fied based on satellite properties and others that depend on pre-
vailing environmental conditions (e.g., wind) that modify the
scattering properties of the air–sea interface. The nonlinear op-
erator represents the wave-SAR transform, and its func-
tional representation is given in Appendix A. is the SAR
image cross-spectrum predicted using this nonlinear map.

To facilitate implementation, the wave-SAR transform (1) is
often cast in terms of a series expansion (e.g., [10])

(2)

where is an (equivalent rectangular width) azimuth
cutoff wavenumber and depends on through the
velocity bunching covariance function such that

(see Appendix A). The denote
terms in the expansion with subscripts referring to the order of
nonlinearity. The importance of higher order terms in (2) scales
with the standard deviation of the azimuth shift due to velocity
bunching and are expected to play a role for satellite platforms
in which exceeds 100 s [14]. Reference [15] demonstrates
that the effect of nonlinearity on the SAR spectrum is manifest
as spectral spreading of energy and the generation of higher
order harmonics.

A useful simplification of the wave-SAR transform is the
quasilinear approximation. This is obtained by considering only
the leading order term in (2), i.e., that part of the trans-
form that is a linear in . For the cross-spectral case, this
takes the form

(3)

where is defined in Appendix A and depends on the tilt,
hydrodynamic and velocity bunching modulation of the radar
cross section by the ocean gravity wave field. The term rep-
resents phase shifting of the wave spectral components (wave
translation) over the separation timebetween looks. The deep
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Fig. 4. Imaginary part of RADARSAT SAR image cross-spectra derived from two looks at the same ocean scene, separated by 0.4 s in time. The axes follow
Fig. 1. The grayscale corresponds to spectral density of the normalized radar cross section. The dotted area follows Fig. 2.

water dispersion relation for surface gravity waves gives
. The quasilinear limit represents a weakly nonlinear

approximation to the full nonlinear transform. While it is not
strictly valid for RADARSAT ( 120 s), there is some sug-
gestion that its utility may be extended by straightforward mod-
ifications to the basic wave-SAR map (e.g., [15], [26]). In any
case, we adopt the philosophy that the analytically and numer-
ically much simpler quasilinear transform is a useful approxi-
mation, and in Section III-B demonstrate its central role as an
intermediary in the inversion of the fully nonlinear transform.

Fig. 6 shows the normalized quasilinear map for an input
white wave spectrum ( 1) with 0. This approx-
imates the transfer function between the wave and SAR auto-
spectra or, alternatively, the gain window through which the
SAR sees the ocean wave spectrum. Its main features are the
azimuth cutoff for 0.05 m , and near zero regions
near the origin. The modification for the cross-spectral case
( 0) may also be readily ascertained from Fig. 6. For our
RADARSAT cases, 0.4 s and we consider the wavenumber
domain 0.15 m . According to (3), the coincident
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Fig. 5. Phase spectra for RADARSAT SAR. For plotting purposes, regions of the phase spectrum having a coherency< 0.6 have been set equal to zero (see text).
The axes follow Fig. 1. The grayscale indicates the phase in radians.

spectrum is just the auto-spectrum multiplied by . This
corresponds to Fig. 6 multiplied by a factor varying from 1 at the
origin to 0.8 near the edges. Similarly, the quadrature spectrum
has a in (3). The multiplication factor is zero at the
origin and rises to less than 1/2 the value of the autospectrum at
the edges. Thus, the coincident spectrum is larger in magnitude
and slightly biased toward low wavenumber information, while
the quadrature spectrum is smaller in magnitude and biased to-
ward higher wavenumber information. This fact, coupled with
sampling variability, helps explain the observed RADARSAT

cross-spectra of Figs. 2 and 4, and the variability of the phase
estimates of Fig. 5. The nonlinear transform acts to couple the
real and imaginary parts.

Practical (numerical) implementation of the wave-SAR
transform is carried out in a discrete vector space. The discrete
wave-SAR transform may be represented as

(4)

where is a vector containing the wave spectrum evalu-
atedovera lattice of range andazimuth wavenumbers and vector-
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Fig. 6. Gain spectrum associated with the basic quasilinear wave to SAR transform (see Appendix A). This is based on RADARSAT SAR parameters of Table I
and assumes an input white wave spectrum with� = 0. An azimuth cutoff wavelength of 125 m has been chosen as typical for RADARSAT. The grayscale
corresponds to normalized power spectral density of the radar cross section.

ized. The nonlinear vector operator denotes the wave-SAR
transform,and is thepredictedSAR(auto-orcross-)spectrum
definedover thesamewavenumbergrid.Weassume,without loss
of generality, that all quantities in (4) are real valued (real and
imaginary parts of the complex valued SAR cross-spectrum can
be treated as separate elements in. Note also that the regres-
sion-based development of Section III-B may be cast in equiva-
lent terms for either the real or complex case [3]).

The wave-SAR transform is often modified to take account
nonwave processes which influence the observed spectrum
through changes in the scattering properties of the air–sea
interface. For instance, [26] points out the role of wind effects
on the scene coherence time and suggests fitting for the azimuth
cutoff on a case dependent basis. Reference [20] absorbs
wind effects into the real aperture radar modulation transfer
functions which underlie the wave-SAR transform. Reference
[15] derives a modified wave-SAR transform to account for
point target spreading due to finite sensor resolution. Such
case dependent modifications to the wave-SAR transform are
examined in Section IV.

B. Inversion of the Forward Map

The general inverse problem associated with estimating
waves from SAR has two main elements: 1) a parameter
estimation problem associated with determining unknown or
poorly specified quantities such as and 2) a state estimation
problem associated with the recovery of the wave spectrum.
Estimation of these unknowns relies on the observed SAR
spectra and, where available, prior knowledge on the wave
spectrum (e.g., from a wave model). We consider separately
the parameter and state estimation problems. Parameter es-

timation involves compensating for case-specific effects in
the wave-SAR transform, and it is treated in Section IV. State
estimation deals directly with the wave information content of
the SAR and is examined in detail below.

The state estimation problem is governed by the following
system of regression equations

(5)

The first equation describes the measurement process with
denoting the observed SAR (auto- or cross-) spectrum and
the underlying true value of the wave spectrum. The zero-mean
measurement error has covariance . The second equation
accounts for the prior wave estimate, and its zero-mean error
is given as with covariance (the assumption of unbiased
error could be relaxed). Note that we make use of a wide sense
(WS) assumption about the error processes, wherein no distribu-
tional assumptions are made excepting the specification of the
first and second moments.

Recovering a minimum variance estimate1 for the underlying
true wave spectrum from (5) leads to the minimization of a cost
function

(6)

with respect to . The first term in is the weighted squared
observation error and represents both nonwave noise

1ML estimates would require considering the probability density functions
of e ande . However it is notable that under a wide variety of distributional
assumptions, practical implementation of nonlinear regression leads to the use
of generalized (or iteratively reweighted) least squares estimators, e.g., [3], [23].
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processes in the SAR spectrum as well as model errors in the
wave-SAR transform. The second term is the weighted squared
error of the prior wave estimate and represents devi-
ations of this prior from the underlying true wave spectrum.

The general form of the cost function (6) is applicable to
nearly all wave-SAR studies. Additional terms may be included
in to control properties of integral features such as the signifi-
cant wave height or mean propagation direction [12]. This corre-
sponds to adding further prior information and can be absorbed
into this general framework. It is notable that the weighting
functions (the inverse error covariances ) used in the
cost function often vary a great deal between studies (contrast
[15], [8], and [12]). The consequence of these differences in the
quantity to be minimized is an improper accounting for the rel-
ative role of SAR-derived and prior wave information for dif-
ferent regions of the wavenumber domain. This leads to prac-
tical difficulties in comparing methods and their results. We
demonstrate below that the final estimates of the state and its
error variance, as well as the convergence of the minimization
procedure, are strongly influenced by choice ofand .

In nonlinear wave-SAR inversion, minimization of the cost
function is generally carried out iteratively based on an incre-
mental updating of a first guess wave spectrum (e.g., [10]). De-
note as the estimate of the wave spectrum at iterationof
the minimization procedure. The updated wave spectrum takes
the form

(7)

where denotes the incremental change to the current esti-
mate of the wave spectrum. Substituting this in the cost function
(6) yields, for the th iteration

(8)

Taking the leading order term of a Taylor expansion of
about allows (8) to be written

(9)

where the increments are defined as ,
, and . The wave-SAR transform lin-

earized about the current state is . Each
iteration then requires the minimization of a quadratic cost func-
tion, and the full solution is a sequence of linear estimation
problems. Statistically, the above represents an extension of the
Gauss–Newton method of nonlinear regression (e.g., [23]) to the
random- case (Appendix B).

Within each iteration of the multistep minimization of the cost
function (6), a linear regression problem must be solved. This
yields the incremental change in the wave spectrum at iteration

, i.e.

(10)

with

(11)

Here, provides an asymptotic estimate for the error covari-
ance of the predicted wave spectrum (Appendix B).

The general development presented here makes clear that
three quantities play a key role in wave-SAR inversion:,

, and . As remarked upon previously, and influence
the choice of the quantity to be minimized, the convergence
path taken, and the validity of the final wave estimates and
associated errors. Consider now the specification of the quantity

, the linearization of the wave-SAR map about the current
wave state. Reference [8] offers an analytic gradient expression

for a simplified version of (6) in which an exact
linearization of the wave-SAR map is implicit. However, a
common strategy, motivated by the complexity of the nonlinear
transform and its differentiation, is to approximate by
an iteration invariant derived from the quasilinear transform
(e.g. [15], [12]). Since in (6) remains defined in terms of the
full nonlinear transform , the consequence of using an
approximate rests only in the convergence properties of the
algorithm. This is briefly illustrated below.

To examine the convergence of the minimization procedure,
suppose that we have an estimate and seek an update of
the form (7) based on the increment (10). If is sufficiently
close to its true value , we may carry out a Taylor expansion
of about . This leads to the following convergence
formula, valid in the vicinity of the true minimum

(12)

where

with denoting the identity matrix. If the eigenvalues of
are less than one in absolute value, then convergence will be
achieved as . Note that if , conver-
gence is achieved immediately. Otherwise, it is the “closeness”
of an approximate to (in terms of the eigen-
values of ) that will dictate the convergence properties.
Numerous wave-SAR studies suggest (but do not prove) that
the quasilinear transform provides a reasonable approximation
to an exact linearization, and that convergence can be achieved
under a variety of circumstances (e.g., [15], [12]). However, the
exact gradient of [8] does have attractive theoretical properties
and deserves further examination.

C. Limiting Cases

Case 1: SAR Only:Consider the situation where wave es-
timation must rely on SAR alone. Observability is the main
issue in the sense that there are wavenumber regions where
SAR provides no wave information. These null spaces are evi-
dent in Fig. 6. For a linearized wave-SAR map, the regression

with solution
cannot be achieved directly. Singular value decomposition of-
fers one solution for such rank-deficient regression problems
(e.g. [2]). However, it relies on an implied prior based on a min-
imum norm for the solution vector . This effectively sets wave
estimates in spectral null spaces to zero. The implication for the
nonlinear inversion is that portions of a first guess wave, which
project into the null space will not be changed in subsequent iter-
ations (the algorithm may converge, but the inverse problem ef-
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fectively remains ill-posed). The first guess wave acts as a prior
estimate for that portion of the wave spectrum not observable
by the SAR.

Case 2: Blending of SAR and Prior Wave Informa-
tion: Consider the linearized wave-SAR transform as above.
If is a diagonal matrix, SAR-derived wave estimates for the
th wavenumber bin are determined as (where

exists). Furthermore, assume that is the th element of
, and that and . For

each admissible wavenumber bin, the wave estimate takes
the form

where . The final wave estimate is simply a
weighted sum of the SAR-derived and the prior wave estimates.
The weighting is governed by, which may be interpreted as
the ratio of 1) the error variance of SAR observations scaled by
the inverse transform, to 2) the error variance of the prior wave
estimate. If 1, such as might be expected in wavenumber
regions corresponding to null spaces of the transform, the esti-
mate reverts to . If , the estimate becomes .

IV. A PPLICATION

In this section, we examine some practical aspects of the
wave-SAR inverse problem using the observed SAR image
cross-spectra. This is carried out in the context of the statistical
estimation procedure of the previous section and makes use of
a modified quasilinear wave-SAR transform, which includes
case-specific non-wave geophysical and imaging effects. Note
that use of the nonlinear transform did not appear justified on
the basis of its ability to explain additional variability found in
the observed SAR spectra.

The observed RADARSAT SAR image cross-spectra contain
features not accounted for by the basic wave-SAR transform
of Appendix A. These include broadband noise due to residual
speckle, spectral falloff at higher wavenumbers due to finite
sensor resolution, and geophysical (e.g., wind) modifications
to the azimuth cutoff. While some progress has been made in
understanding these processes, in practice, they tend to be ad-
dressed either through standard preprocessing procedures [17]
or through fitting exercises based on observed SAR auto-spectra
(e.g., [26], [15]). As an alternative procedure, we consider SAR
image cross-spectra and a parameter estimation procedure that
takes account of prior wave information in order to modify the
basic wave-SAR transform. Below, we consider the coincident
spectra in detail and use the quadrature spectra only for its phase
information.

In order to modify the wave-SAR map for case-specific ef-
fects, we seek to minimize a discrete version of the cost function

where and denote the observed and modeled SAR
coincident spectra, respectively. We assume the following form
for

(13)

TABLE II
CHARACTERIZATION OF THERADARSAT SAR SPECTRA AND THEWAVE-SAR

TRANSFORM. HERE, � (0) IS THE CALCULATED ZERO LAG OF THE

VELOCITY BUNCHING COVARIANCE FUNCTION (SEEAPPENDIXA). ESTIMATED

AZIMUTH FALLOFF, RANGE FALLOFF, AND NOISELEVEL PARAMETERS OF THE

SAR CO-SPECTRA AREDENOTED BY c , c , AND c , RESPECTIVELY. K IS A

FITTED EQUIVALENT RECTANGULAR WIDTH CUTOFF WAVENUMBER IN m
(SEETEXT). THE FINAL COLUMN IS THE CORRELATION BETWEEN THE

OBSERVED AND SIMULATED SAR COINCIDENT SPECTRA

Here, with and rep-
resenting the falloff in power in the azimuth and range direc-
tions. This falloff is due to point target spreading and, in the
case of , wind effects on the azimuth cutoff. represents a
speckle-based noise floor and is strictly valid only for indepen-
dent and identically distributed (i.i.d.) speckle [9]. The real part
of the wave-SAR map is based on (3) using
from the observed buoy wave spectra. The radar modulation
transfer functions in follow [17] with the parameters of
Table I. The unknown parameters, , and were estimated
using a simplex method for nonlinear minimization [21]. Re-
sults are given in Table II. Note that while the predicted azimuth
cutoff factor (derived from the basic wave-SAR trans-
form) is quite variable, allowing for inclusion of a case-specific

has rendered the cutoff wavenumber more stable and re-
alistic.

Simulated SAR coincident spectra were calculated using the
modified wave-SAR transform and the estimated values of,

, and from Table II (see Fig. 7). The simulated SAR spectra
compare reasonably well with the observed spectra of Fig. 2
(correlations are given in Table II). Cases 1–3 show good cor-
respondence in terms of both the overall magnitudes, peak lo-
cations, and level of the broadband noise. In cases 4 and 5, the
observed and modeled SAR spectra compare less well. This re-
sults from peaks in the observed wave and SAR spectra being
offset across the zero range and zero azimuth wavenumber axes,
respectively (compare Figs. 1 and 2). Case 6 shows a situa-
tion where the modified transform predicts range splitting where
none is found.

The observation error structure was next determined based on
analysis of the residuals between the
observed and predicted SAR coincident spectra. The postulated
error variance structure follows (13) and takes the form

var

(14)

The Gaussian function captures the falloff in the mag-
nitude of the error with the increasing wavenumber is a
wavenumber independent noise term, and the model error term
consists of scaling factor multiplied by the structure func-
tion . For simplicity, is taken to be the quasilinear
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Fig. 7. Real part of the modeled SAR cross-spectrum obtained based on the modified quasilinear wave-SAR map and the buoy wave spectra. The axes follow
Fig. 1, and the grayscale represents the spectral density of the radar cross section. Dotted areas follow Fig. 2.

wave-SAR map with an input white wave spectrum (see Fig. 6)
and modified to use the cutoff wavenumber from Table II.
Residual analysis suggests a case-independent estimate for
(with energy falloff factors 100 and 200) and for
the noise level ( 1). The case-dependent had the fol-
lowing values: 1.5, 2.1, 2.3, 10.5, 1.9, and 9.8 for cases 1–6, re-
spectively. The high values in cases 4 and 6 resulted from mis-
matches in the spectral distribution of energy in the observed
SAR and buoy wave spectra. Error correlations are assumed
isotropic in wavenumber and based on the smoothing kernel ap-

plied to the raw SAR spectra. Fig. 8 shows the error variance for
case 1. The aforementioned error analysis allows us to specify

.
As a preprocessing step in wave-SAR inversion, we separate

the wave signal from non-wave processes to avoid any broad-
band noise present in the observed SAR being attributed to
ocean wave energy. First, regions of the coincident spectra were
identified corresponding to coherency greater than 0.6 (see
Section II). Second, the corresponding mean phase values in
each of these coherent regions are used to identify the portion
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Fig. 8. Typical root mean squared (RMS) error variances (from case 1) for the
following spectral quantities: (a) residual between the simulated and observed
RADARSAT coincident spectrum, (b) wave estimate recovered using SAR
information only, (c) wave estimate using SAR and a prior wave spectrum
with � = 5 . The axes follow Fig. 1. Dotted areas identify null spaces of the
inversion.

of the SAR spectrum corresponding to the wave propagation
direction (see Fig. 5). Finally, a noise floor is subtracted from
these spectral regions, whose magnitude is based on the results
given in Table II. This procedure identifies the portion of the
observed-SAR spectrum with useful wave information.

Fig. 9 shows SAR-derived wave estimates based on inversion
of the wave-SAR transform. These are based on the coherency

and phase-filtered SAR spectrumand the modified wave-SAR
transform of (13), using the values of Table II but with

0 (we have removed the noise floor). Wave estimates
are then determined as . Null
spaces where the SAR has no information content are explicitly
identified as part of this inversion procedure. It is clear that
comparison of the SAR-derived wave estimates with the buoy
spectra would normally take place in a very limited region of
the wavenumber plane. Moreover, the information content of
these non-null regions must take into account the error variance
of the SAR-derived wave. Panel (b) of Fig. 8 shows this error
variance for case 1. Note that in spectral regions adjacent to
null spaces, the error variance tends to be large, reflecting the
sensitivity of wave estimates to the azimuth cutoff. The overall
energy content of the SAR-derived and buoy wave spectra in
non-null regions show a reasonable match in all cases with the
exception of cases 4 and 6.

Estimation of the complete directional wave spectrum must
combine wave information from the (band limited) SAR with
the (broad band) buoy wave spectra, taking into account the
wavenumber dependence of their respective error covariances.
Initial experiments with direct blending of the SAR and buoy
information using (10) lead to discontinuties near the azimuth
cutoff (imagine combining the wave spectra in Figs. 1 and 9,
also see Section III-C). However, the error variance of the wave
estimates [panel (c) of Fig. 8] reveals the main properties asso-
ciated with the blending of SAR and prior wave estimates: null
spaces are eliminated and the overall error variance is reduced.

Asanalternative todirectblending,wealsoconsideredparam-
eterization of the true wave spectrum in terms of the buoy spec-
trum, but allow for its free rotation through an angle. In terms
of the cost function (6), or (9), we let rot and we
minimize with respect to . The two terms in the cost function
are then interpreted as measuring the weighted squared differ-
ences between: 1) the observed SAR spectrum and that predicted
using the rotatedbuoywavespectrum,and2) thebuoywavespec-
trum and its rotated version. The second term acts as a regulariza-
tion term that biases the final estimator toward a state of minimal
rotation. For simplicity, we assume . Fig. 10 shows
the cost function versus the rotation anglefor the six cases.
Three treatments are applied: baseline ( 0), weak regular-
ization ( ), and strong regularization ( ).
The results indicate multiple minima in for the baseline situ-
ation. Strong regularization generally biases results heavily to-
ward 0. Weak regularization allows for an unambiguous
choiceof theoptimal required tobring thewavespectraofFig.1
into agreement with the SAR-based wave information. Gener-
alized cross-validation would provide a more formal means to
choose the strength of the regularization term [4].

V. SUMMARY AND CONCLUSIONS

In this paper, we have examined the problem of extracting
information on the directional ocean wave spectrum from SAR
imagery. A unique aspect of this study is its emphasis on sta-
tistical aspects of the inverse problem, as well as the use of
SAR image cross-spectra. Our framework for wave-SAR inver-
sion allows the wave information content of SAR to be quanti-
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Fig. 9. Wave estimates derived from RADARSAT SAR spectra. The axes follow Fig. 1. The grayscale denotes the spectral density of the radar cross section.
Dotted areas identify null spaces of the inversion.

fied on a wavenumber-dependent basis. The RADARSAT SAR
data used here were processed into two looks at the same ocean
scene separated by 0.4 s. Speckle noise was greatly reduced in
comparison with the SAR auto-spectra, though some broadband
noise persisted. The coincident spectrum clearly showed the
wave modulation of the radar cross section in limited, but identi-
fiable, regions of wavenumber space. The quadrature spectrum
had much greater variability, but the associated phase spectrum
was able to resolve propagation direction for most cases. How-
ever, the mean phase values in each of the wave groups varied

significantly about the value expected based on a deep water
dispersion relation.

The extraction of wave information from observed SAR
spectra was examined from the perspective of a statistical
estimation problem, specifically, a random-extension of
nonlinear regression (Appendix B). This general formulation
highlights key issues and allows an assessment of the conse-
quences of the differing assumptions made in past wave-SAR
inversion work. It was shown that the wave-SAR inverse
problem requires estimates for the error covariances associated
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Fig. 10. Cost functionJ as a function of the rotation angle� (see text). The rotation angle is measured positive clockwise in degrees. Lines designate the three
different treatments: baseline case with� = 0 (solid), weak regularization with� = 15 (dashed), and strong regularization with� = 10 (dash-dot).
� refers to the optimal rotation angle for the minimumJ in the case of weak regularization.

with 1) the observed SAR (including errors in the wave-SAR
transform), and 2) the prior wave estimates. Specification
of these quantities varies widely between studies (contrast
[12], [15], [8]). Another common simplification of wave-SAR
studies uses the quasilinear wave-SAR map as an intermediary
in the inversion of the fully nonlinear transform (e.g., [10],
[12]). We showed how this approximation to an exact lin-
earization of the wave-SAR map about the current wave state
is linked to the convergence properties of the minimization

algorithm. These are important issues to consider for the use of
SAR in a wave data assimilation system.

A simple wave-SAR inversion procedure was carried out
for the purpose of examining practical issues pertinent to
wave extraction from SAR. Toward this end, we elected to
focus on the real part of the SAR image cross-spectra and
use the quadrature spectra only for its phase information. A
modified wave-SAR transform was used, which empirically
accounted for broadband residual speckle [9], spectral falloff
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with increasing wavenumber [17], [15], and sea surface effects
on the azimuth cutoff [26]. These parameters were estimated
using a fitting procedure designed to minimize the squared
difference between the observed and modeled SAR coincident
spectra. A canonical form for the observation error covariance
was determined based on an analysis of the residuals between
the observed and predicted SAR coincident spectra. Wave
extraction from the SAR spectra was achieved by filtering for
broadband noise and wave propagation direction using the co-
herency and phase spectra. Inversion of the modified wave-SAR
transform emphasized the highly band-limited nature of the
SAR wave information and provided for explicit treatment of
the null spaces and estimates of the wavenumber-dependent
error variance.

There are a number of outstanding issues involved in SAR
processing for optimal extraction of ocean wave information
(e.g., [27]). At the heart of the cross-spectral method is the mul-
tilook processing of the SAR data, which produces independent
looks at the same ocean scene. Ideally, these looks should be
temporally separated by a significant fraction of the period of
the dominant wave groups. However, time separations are con-
strained by the Doppler bandwidth of the SAR to be a fraction of
a second. The relation of the noise processes to the Doppler fil-
tering and multilook processing remains unclear. We also illus-
trated how the coincident and quadrature spectra provide com-
plementary information on the wave spectra due to the (deep
water) dispersion relation embedded in the wave-SAR trans-
form. However, the extent to which look separation and cross-
spectral SAR processing may be optimized for the extraction of
waves remains an open question.

A key issue in extracting wave information from SAR is the
appropriate use of the highly band limited wave information.
Null spaces must be explicitly identified and quantitative
estimates of the wavenumber dependent error covariance are
necessary. We have argued that the observation error covariance
matrix plays an important role in wave-SAR inversion. This
quantity includes shortcomings in the wave-SAR transform,
noise, and non-wave signals, as well as errors of representative-
ness due to sampling variability [16]. Our prototype expression
for the reflected two main features: 1) compensation for the
nonuniform response of the SAR to changes in wave energy
for different spectral regions (see [15]), and 2) uncertainties
associated with noise and pre-processing. Our treatment has
taken account of the full wavenumber plane and emphasizes
that the SAR provides as much information about both where
the wave energy is located in wavenumber space, as well as
regions in which there is no wave energy. This treatment would
be greatly enhanced by a more extensive data set on which to
base the error analysis.

The assimilation of SAR in operational wave models is under
active development [6]. Like many satellite data sources, SAR
is nonlinearly related to the prognostic variables of interest (i.e.
a nonlinear measurement operator). We have outlined the esti-
mation problem associated with the use of SAR in a wave data
assimilation context. Blending of the band limited SAR derived
waves with model estimates requires additional assumptions in
order toobtainphysically realizablewavenumberspectra (e.g., to
account for spectral discontinuties near the azimuth cutoff). Un-

fortunately, generic spectral shapes for swell do not exist, unlike
for a wind sea [19]. Parameterization of the wave-spectral shape
in terms of that predicted by a wave model has been suggested
[12]. Our simple experiments with such a parameterization, al-
lowing for free rotation of the spectral shape, indicated the com-
plexity of such an optimization: multiple minima were found in
the cost function and additional regularization was required.

In conclusion, satellite-based SAR inter-look image cross-
spectra offers useful, though limited, information on the direc-
tional ocean wave spectrum. A basic understanding of the in-
verse problem associated with wave extraction from SAR is cen-
tral to the continued use of SAR for understanding ocean waves.
We have examined a regression-based framework to investigate
the problem and emphasize the importance of taking proper ac-
count of uncertainties in the observed SAR spectrum and the
wave-SAR transform. Continued investigation of SAR imagery
co-located within situ wave information is needed (e.g., [20]).
These studies should focus on rectifying uncertainties in the
wave-SAR transform, as well as providing for a robust statistical
description of non-wave, geophysical effects (such as wind) on
the SAR spectrum, including parameterization of errors. Such
studies would clearly advance the practical use and theoretical
understanding of SAR imaging of ocean waves.

APPENDIX A
WAVE-SAR TRANSFORM

The closed form, nonlinear integral transform relating the
ocean wave spectrum to the SAR image autospectrum is due to
[10], and has been extended to the case of SAR image cross-
spectra [8]. Following [8], the wave-SAR transform may be
summarized as

(15)

where represents the SAR image cross-spectrum based
on two looks at the same ocean scene separated by the time
interval (the functional dependence onis implicit). The
vector wavenumber is in satellite coordinates
and denotes the cross-track (range) and along-track (azimuth)
wavenumbers, respectively. The corresponding coordinates in
the spatial (image) domain are given by . A basic
version of the (wave spectrum dependent)-function in the in-
tegrand takes the form

(16)

where

with denoting one of or . The covariance functions
in the above take the form
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where denotes complex conjugation, is the ocean wave
spectrum, and

Here, the are the radar modulation transfer functions that
summarize the ensemble properties of the interaction of the
radar waves with the sea surface with subscripting denoting
either the real aperture radar (RAR) tilt and hydrodynamic mod-
ulation , or the velocity bunching modulation . Reference
[17] gives a very basic form for these relations

(17)

where
constant;
denotes range (distance from the antenna to the target);
platform velocity;
incidence angle.

More detailed and realistic RAR modulation transfer functions
are available and frequently used, e.g., [20].

The wave-SAR transform (1) is generally evaluated based
on series expansion of the exponential term in
(16), i.e.

(18)

where denotes the Fourier transform operator. The integral
in (15) is thus cast as a sequence of readily evaluated Fourier
transforms.

The analytic properties of the nonlinear wave-SAR transform
for the case of SAR auto-spectra ( 0) have been examined
by [14]. In the cross-spectral case ( 0), a phase shift is
introduced into the function. This represents a simple wave
translation model valid over the s time separation between
the looks. The frequencycan be based on a dispersion relation,
which for deep water takes the form .

The quasilinear limit of (18) contains only those terms in the
square brackets which are linear in , i.e.,

(19)

where

This represents a weakly nonlinear approximation to the full
nonlinear transform and is uniformly valid over the wavenumber
space. Note that it is analytically and numerically much simpler
than either (15) or (18).

APPENDIX B
RANDOM- REGRESSION

Consider the system of regression equations

where the regression coefficientsare treated as a random vari-
able (hence, the designation “random-”). These can be com-
bined a single regression equation as

Assume that the errors are uncorrelated, i.e.,

var

where and represent the associated error covariance ma-
trices. The above equation is now in standard regression form,
and the generalized least squares solution foris obtained im-
mediately as

(20)

where is the error covariance matrix of and is given by

(21)

An alternative expression may be derived as follows. Substi-
tuting (21) into (20) and solving for yields

where we have defined the gain matrix . This
makes clear how the observations may be viewed in terms of
updating the prior estimate and is directly linked to a single-
stage transition of the Kalman filter [5].
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