¡¡
¡¡
Áö±¸Á¤º¸ÇÐ ¹× ½ÇÇè (3Çгâ 2Çбâ Àü¼±)
¡¡
¡¡
< ° ÀÇ >
[Áß°£½ÃÇè] 2006³â 10¿ù 25ÀÏ(¼ö) 9½Ã-10½Ã 50ºÐ
¡¡
< ½Ç ½À >
½Ç½À 2. ÁÖÁ¦µµ Á¦ÀÛ°ú Áöµµ ·¹À̾ƿô
½Ç½À 3-1. ¼öÄ¡ÁöÇüµµ ÁÂÇ¥ º¯È¯ (Bessel TM -> WGS84 UTM) (½Ç½ÀÀÚ·á)
½Ç½À 4. ¼öÄ¡ÁöÇüµµ·ÎºÎÅÍ Ä¿¹ö¸®Áö ±¸Ãà
½Ç½À 5. µðÁöŸÀÌ¡À» ÅëÇÑ °ø°£ µ¥ÀÌÅÍ ±¸Ãà
½Ç½À 6. µµ¸é Á¢ÇÕ°ú °ø°£µ¥ÀÌÅÍ Á¶ÀÛ
½Ç½À 7. ¼Ó¼ºµ¥ÀÌÅÍÀÇ ÀԷ°ú Á¶ÀÛ
½Ç½À 13. 3Â÷¿ø Ç¥Çö°ú °¡½Ã¼º ºÐ¼®
¡¡
[±â¸»½ÃÇè] 2006³â 12¿ù 5ÀÏ(È) 9½Ã - 10½Ã 50ºÐ (½ÃÇèÁö, ÆÄÀÏ)
¡¡
ArcView Extensions: 3dto2d.avx, basin1.avx, demfill.ave
¡¡
¡¡
¡¡
°ÀÇ ±³Àç: Weber and Arfken, 2004. Essential Mathematical Methods for Physicists, Elsevier Science.
1. Vector Analysis
¼÷Á¦ 1: [Prove the divergence of curl of a vector function is zero], [Prove the curl of gradient of a scalar function is zero], [Exercise 1.3.4], [Example 1.9.1]. 2006³â 9¿ù 15ÀϱîÁö.
2. Vector Analysis in Curved Coordinates
¼÷Á¦ 2: [Probe g_12=g_13=g_23=0 in Circular Cylindrical Coordinates], [Vector Analysis in Spherical Polar Coordinates]. 2006³â 9¿ù 22ÀϱîÁö.
3. Determinants and Matrices
¼÷Á¦ 3: [ÁÖ¾îÁø Çà·Ä¿¡ ´ëÇÏ¿© Gauss-Jordan Matrix Inversion, Eighenvalue & Eigenvector ±¸Çϱâ]. 2006³â 9¿ù 29ÀϱîÁö.
4. Infinite Series
¼÷Á¦ 4: [¿©¼¸ ¹®Á¦] 2006³â 10¿ù 13ÀϱîÁö.
[Áß°£½ÃÇè] 2006³â 10¿ù 24ÀÏ(È) 5-7½Ã
5. Complex Variable I
¼÷Á¦ 5: [Example 6.1.2], [Exercise 6.1.9, 6.1.10], 2006³â 11¿ù 10ÀϱîÁö.
¼÷Á¦ 6: Analytic functions, Mapping, 2006³â 11¿ù 10ÀϱîÁö.
6. Complex Variable II - Calculus of Residues
¼÷Á¦ 7: Residue calculation ¹®Á¦µé. 2006³â 12¿ù 1ÀϱîÁö.
7. Differential Equations
[±â¸»½ÃÇè] 2006³â 12¿ù 12ÀÏ(È) 5-7½Ã.
¡¡
¡¡
¡¡
1. °ÀÇ ¼Ò°³ ¹× ÇÁ·Î±×·¥ ¼³Ä¡: cygwin, gcc, gnuplot
[Áß°£½ÃÇè] 2006³â 10¿ù 18ÀÏ(¼ö) 3-6½Ã
[±â¸»½ÃÇè] 2006³â 12¿ù 13ÀÏ(¼ö) 3-6½Ã
¡¡
¡¡
Last updated on 2006-12-21 by Prof. Hoonyol Lee.